Mean approximation on an interval for an exponent less than one
Authors:
T. S. Motzkin and J. L. Walsh
Journal:
Trans. Amer. Math. Soc. 122 (1966), 443-460
MSC:
Primary 41.41
DOI:
https://doi.org/10.1090/S0002-9947-1966-0201891-4
MathSciNet review:
0201891
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Paul G. Hoel, Certain Problems in the Theory of Closest Approximation, Amer. J. Math. 57 (1935), no. 4, 891–901. MR 1507122, https://doi.org/10.2307/2371025
- [2] T. S. Motzkin and J. L. Walsh, Least 𝑝th power polynomials on a real finite point set, Trans. Amer. Math. Soc. 78 (1955), 67–81. MR 66492, https://doi.org/10.1090/S0002-9947-1955-0066492-2
- [3] T. S. Motzkin and J. L. Walsh, Polynomials of best approximation on a real finite point set. I, Trans. Amer. Math. Soc. 91 (1959), 231–245. MR 108673, https://doi.org/10.1090/S0002-9947-1959-0108673-9
- [4]
-, A persistent local maximum of the
th power deviation on an interval,
, (to appear).
- [5] J. L. Walsh and T. S. Motzkin, Polynomials of best approximation on an interval, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1523–1528. MR 119004, https://doi.org/10.1073/pnas.45.10.1523
- [6] J. L. Walsh and T. S. Motzkin, Best approximators within a linear family on an interval, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 1225–1233. MR 162077, https://doi.org/10.1073/pnas.46.9.1225
- [7] J. L. Walsh and T. S. Motzkin, Polynomials of best approximation on an interval. II, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1533–1537. MR 145255, https://doi.org/10.1073/pnas.48.9.1533
Retrieve articles in Transactions of the American Mathematical Society with MSC: 41.41
Retrieve articles in all journals with MSC: 41.41
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1966-0201891-4
Article copyright:
© Copyright 1966
American Mathematical Society