Decompostions of $E^{3}$ with a compact $\textrm {O}$-dimensional set of nondegenerate elements

Author:
Steve Armentrout

Journal:
Trans. Amer. Math. Soc. **123** (1966), 165-177

MSC:
Primary 54.78

DOI:
https://doi.org/10.1090/S0002-9947-1966-0195074-4

MathSciNet review:
0195074

Full-text PDF Free Access

References | Similar Articles | Additional Information

- Steve Armentrout,
*Upper semi-continuous decompositions of $E^{3}$ with at most countably many non-degenerate elements*, Ann. of Math. (2)**78**(1963), 605–618. MR**156331**, DOI https://doi.org/10.2307/1970546
---, - R. H. Bing,
*Upper semicontinuous decompositions of $E^3$*, Ann. of Math. (2)**65**(1957), 363–374. MR**92960**, DOI https://doi.org/10.2307/1969968 - R. H. Bing,
*A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$*, Ann. of Math. (2)**65**(1957), 484–500. MR**92961**, DOI https://doi.org/10.2307/1970058
---, - R. H. Bing,
*Snake-like continua*, Duke Math. J.**18**(1951), 653–663. MR**43450** - R. H. Bing,
*Inequivalent families of periodic homeomorphisms of $E^{3}$*, Ann. of Math. (2)**80**(1964), 78–93. MR**163308**, DOI https://doi.org/10.2307/1970492
---, - R. H. Bing,
*An alternative proof that $3$-manifolds can be triangulated*, Ann. of Math. (2)**69**(1959), 37–65. MR**100841**, DOI https://doi.org/10.2307/1970092
K. W. Kwun, - Kyung Whan Kwun and Frank Raymond,
*Almost acyclic maps on manifolds*, Amer. J. Math.**86**(1964), 638–650. MR**184239**, DOI https://doi.org/10.2307/2373028
L.L. Lininger, - Edwin E. Moise,
*Affine structures in $3$-manifolds. V. The triangulation theorem and Hauptvermutung*, Ann. of Math. (2)**56**(1952), 96–114. MR**48805**, DOI https://doi.org/10.2307/1969769 - R. L. Moore,
*Foundations of point set theory*, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722** - C. D. Papakyriakopoulos,
*On Dehn’s lemma and the asphericity of knots*, Ann. of Math. (2)**66**(1957), 1–26. MR**90053**, DOI https://doi.org/10.2307/1970113
T. M. Price, - Horst Schubert,
*Knoten und Vollringe*, Acta Math.**90**(1953), 131–286 (German). MR**72482**, DOI https://doi.org/10.1007/BF02392437 - D. G. Stewart,
*Cellular subsets of the $3$-sphere*, Trans. Amer. Math. Soc.**114**(1965), 10–22. MR**173244**, DOI https://doi.org/10.1090/S0002-9947-1965-0173244-8

*Concerning point-like decompositions of ${S^3}$ that yield $3$-manifolds*, Abstract 619-115, Notices Amer. Math. Soc.

**12**(1965), 90. R. J. Bean,

*Decompositions of ${E^3}$ which yield*${E^3}$, Abstract 619-198, Notices Amer. Math. Soc.

**12**(1965), 117.

*A homeomorphism between the $3$-sphere and the sum of two solid horned spheres*, Ann. of Math.

**59**(1952), 354-362. ---,

*Point like decompositions of*${E^2}$, Fund. Math.

**50**(1962), 431-453.

*Topology of $3$-manifolds and related topics*, Decompositions of ${E^3}$, Prentice-Hall, Englewood Cliffs, N.J., 1962; pp. 5-21.

*Upper semi-continuous decompositions of the $n$-sphere*, Proc. Amer. Math. Soc.

**13**(1962), 284-290.

*The sum of two crumpledcubes is ${S^3}$ if it is a $3$-manifold*, Abstract 64T-445, Notices Amer. Math. Soc.

**11**(1964), 678. L. F. McAuley,

*Another decomposition of ${E^3}$ into points and intervals*(to appear).

*Cellular decompositions of*${E^3}$, Ph. D. Thesis, University of Wisconsin, Madison, Wis., 1964.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54.78

Retrieve articles in all journals with MSC: 54.78

Additional Information

Article copyright:
© Copyright 1966
American Mathematical Society