ON BADLY APPROXIMABLE NUMBERS
AND CERTAIN GAMES

BY
WOLFGANG M. SCHMIDT

1. Introduction. A number α is called badly approximable if $|\alpha - p/q| > c/q^2$
for some $c > 0$ and all rationals p/q. It is known that an irrational number α is
badly approximable if and only if the partial denominators in its continued
fraction are bounded [4, Theorem 23]. In a recent paper [7] I proved results of
the following type: If f_1, f_2, \ldots are differentiable functions whose derivatives
are continuous and vanish nowhere, then there are continuum-many numbers α
such that all the numbers $f_1(\alpha), f_2(\alpha), \ldots$ are badly approximable.

Let $0 < \alpha < 1/2$, $0 < \beta < 1$, and consider the following game of two players
black and white. First black picks a closed interval B_1. Then white picks a closed
interval $W_1 \subset B_1$ whose length is α times the length of B_1. Then black chooses an
interval $B_2 \subset W_1$ which is closed and has length β times the length of W_1. Then
again white picks a closed interval $W_2 \subset B_2$ of length α times the length of B_2,
and so on. Call white the winner of a play if the intersection of the intervals W_j
is badly approximable; otherwise black is called the winner.

Who will win? Since the badly approximable numbers have Lebesgue measure
zero, [4, Theorem 29], one might think that black can always win. It turns out,
however, that white can always win (Theorem 3).

We shall show that sets S with this property (namely that white can always
play such that the intersection $\bigcap W_j$ is in S) necessarily contain continuum-many
elements (Lemma 23), that countable intersections of sets with this property
again have this property (Theorem 2), and that if S has this property, and $f(\alpha)$
has a continuous derivative with $f'(\alpha) \neq 0$ everywhere, then the set of α with
$f(\alpha) \in S$ again has this property (Theorem 1). These facts imply the result stated at
the beginning.

We shall discuss games of much greater generality than those mentioned in this
introduction.

The author is indebted to the referee for very valuable suggestions.

2. $(\mathcal{F}, \mathcal{G})$-games. Let M, Ω be sets, Ω' a subset of Ω, and α a mapping from Ω
into subsets of M. Call \mathcal{F}-function any function \mathcal{F} which assigns to every $B \in \Omega$
a nonempty set $\mathcal{F}(B) \subset \Omega$ such that for $C \in \mathcal{F}(B)$,$$
\alpha(C) \subset \alpha(B).

Received by the editors April 30, 1965.

178
Now let \mathcal{F}, \mathcal{G} be \mathcal{H}-functions, and let S be an arbitrary subset of M. Consider the following game of two players black and white. First black picks an element $B_1 \in \Omega'$. Then white picks $W_1 \in \overline{\mathcal{G}}(B_1)$. Then black picks $B_2 \in \overline{\mathcal{G}}(W_1)$. Then again white chooses an element $W_2 \in \overline{\mathcal{G}}(B_2)$, and so forth. Put $B_i^* = \alpha(B_i)$, $W_i^* = \alpha(W_i)$ ($i = 1, 2, \ldots$). One has $B_1^* \supseteq W_1^* \supseteq B_2^* \supseteq W_2^* \supseteq \cdots$. We call white the winner of a play if $\bigcap_{i=1}^{\infty} W_i^* = \bigcap_{i=1}^{\infty} B_i^*$ is contained in S; otherwise black is the winner. This game we call $(\mathcal{F}, \mathcal{G}; S)$-game. We call S an $(\mathcal{F}, \mathcal{G})$-winning set if white can always win the $(\mathcal{F}, \mathcal{G}; S)$-game.

Another way of defining an $(\mathcal{F}, \mathcal{G})$-winning set is the following. Let $F_n (n = 1, 2, \ldots)$ be the set of functions $f(B_1, B_2, \ldots, B_n)$ defined for elements $B_i \in \Omega$ such that $f(B_1, \ldots, B_n) \in \overline{\mathcal{G}}(B_n)$. A sequence f_1, f_2, \ldots where $f_n \in F_n (n = 1, 2, \ldots)$ will be called a strategy. A strategy is called an $(\mathcal{F}, \mathcal{G}; S)$-winning strategy if the following holds: Let $B_1, B_2, \ldots, W_1, W_2, \ldots$ be sets such that $B_1 \in \Omega'$ and

(1) $B_n \in \mathcal{G}(W_{n-1})$ \quad $(n = 2, 3, \ldots)$,

(2) $W_n = f_n(B_1, \ldots, B_n)$ \quad $(n = 1, 2, \ldots)$.

Then $\bigcap_{n=1}^{\infty} B_n^*$ is necessarily contained in S. Now S is an $(\mathcal{F}, \mathcal{G})$-winning set if and only if there is an $(\mathcal{F}, \mathcal{G}; S)$-winning strategy. White will win by choosing $W_n = f_n(B_1, \ldots, B_n)$ when B_1, \ldots, B_n are given ($n = 1, 2, \ldots$).

This means that white bases his decision on how to pick W_n not only on B_n, but also on the previous elements B_1, \ldots, B_{n-1}. Is this necessary? In other words, if S is a winning set, does there exist a winning strategy of the type $f_n(B_1, \ldots, B_n) = f(B_n)$ $(n = 1, 2, \ldots)$, where $f \in F_?$. Such a strategy we shall call positional strategy. Using the well-ordering principle we shall show in the last section that a winning set does indeed have a positional winning strategy. This result has the following interpretation. In our game both players know the outcomes of all the previous moves. One obtains a different game if one specifies that white at the nth move shall know B_n but shall not remember the number n or the previous elements B_1, \ldots, B_{n-1}. Now the result on positional strategies means that if S is a winning set of the original game, it is also a winning set of the new game. A special case of this was proved in [2, §4].

Let f_1, f_2, \ldots be a winning strategy. We call B_1, B_2, \ldots with $B_1 \in \Omega'$, $B_i \in \Omega$ an f_1, f_2, \ldots-chain if there are elements W_1, W_2, \ldots such that (1) and (2) hold. The intersection of the sets $B_n^* = \alpha(B_n)$ of a chain is in S. We call B_1, \ldots, B_k a finite f_1, f_2, \ldots-chain if there are B_{k+1}, B_{k+2}, \ldots such that $B_1, B_2, \ldots, B_k, B_{k+1}, \ldots$ is an f_1, f_2, \ldots-chain.

Lemma 1. Let B_1, B_2, \ldots be elements of Ω such that B_1, \ldots, B_k is a finite f_1, f_2, \ldots-chain for every k. Then B_1, B_2, \ldots is an f_1, f_2, \ldots-chain.

Proof. Put $W_n = f_n(B_1, \ldots, B_n)$ $(n = 1, 2, \ldots)$. Since B_1, \ldots, B_k is a chain,

(3) $B_j \in \mathcal{G}(W_{j-1})$ \quad $(1 \leq j \leq k)$.
Since \(k \) is arbitrary, (3) holds in fact for every \(j \). Hence (1) and (2) hold, and \(B_1, B_2, \cdots \) is an \(f_1, f_2, \cdots \)-chain.

We shall repeatedly use this lemma without mention.

It is reasonable to call \(S \) a losing set if black can always win. It was shown by Gale and Stewart [3] that an \((\mathcal{F}, \mathcal{G}; S)\)-game need not be determinate, and hence in general there are sets which are neither \((\mathcal{F}, \mathcal{G})\)-winning nor \((\mathcal{F}, \mathcal{G})\)-losing.

3. \((\alpha, \beta)\) - and \((a*b)\)-games. Already we have to specialize.

For completeness we mention Oxtoby’s game [6]. Here \(M \) is a topological space, and \(\Omega = \Omega' \) consists of a class of subsets with nonempty interiors such that given a nonempty open set \(\Omega \) there is a set \(\mathcal{C} \subseteq \Omega, \mathcal{C} \in \Omega \). \(\alpha \) is the identity map, \(\mathcal{F}(\mathcal{B}) = \mathcal{G}(\mathcal{B}) \) consists of all subsets of \(\mathcal{B} \) which are in \(\Omega \). A special case is the Banach-Mazur-game [5], [8]. Here \(M \) is the real line and \(\Omega \) consists of \(M \) and all closed intervals.

Let \(M \) be a complete metrical space with distance function \(d(x, y) \). Let \(\Omega = \Omega' \) consist of all pairs \((\rho, c)\), where \(\rho \) is a positive real number and \(c \in M \). The elements \(\mathcal{B} = (\rho, c) \) of \(\Omega \) will be called balls or more precisely balls of \(M \), and we call \(\rho = \rho(\mathcal{B}) \) the radius, \(c = c(\mathcal{B}) \) the center of \(\mathcal{B} \). With \(\mathcal{B} \in \Omega \) we associate the set \(\mathcal{B}^* \) consisting of all points \(x \in M \) satisfying \(d(x, c) \leq \rho \). In general, \(\alpha(\mathcal{B}) \) does not determine \(B \), but it does if \(M \) is a Banach space of positive dimension.

We say a ball \(\mathcal{B}_1 = (\rho_1, c_1) \) is contained in a ball \(\mathcal{B}_2 = (\rho_2, c_2) \) and write \(\mathcal{B}_1 \subseteq \mathcal{B}_2 \) if

\[
\rho_1 + d(c_1, c_2) \leq \rho_2.
\]

This implies (but is not implied by) \(\alpha(\mathcal{B}_1) \subseteq \alpha(\mathcal{B}_2) \). One easily checks that \(\mathcal{B}_1 \subseteq \mathcal{B}_2 \) and \(\mathcal{B}_2 \subseteq \mathcal{B}_3 \) implies \(\mathcal{B}_1 \subseteq \mathcal{B}_3 \).

Let \(0 < \gamma < 1 \). Given \(\mathcal{B} \in \Omega \), let \(\gamma^\mathcal{B} \) be the set of all balls \(\mathcal{B}' \subseteq \mathcal{B} \) having \(\rho(\mathcal{B}') = \gamma \rho(\mathcal{B}) \). Let \(\mathcal{F}^\gamma \) be the \(\mathcal{F} \)-function defined by \(\mathcal{F}^\gamma(\mathcal{B}) = \gamma^\mathcal{B} \).

Now let \(0 < \alpha < 1, 0 < \beta < 1, S \subseteq M \). The \((\mathcal{F}^\alpha, \mathcal{F}^\beta, S)\)-game is well defined. For brevity we will call this the \((\alpha, \beta; S)\)-game. Thus in an \((\alpha, \beta)\)-game, black first picks a ball \(\mathcal{B}_1 \), then white picks a ball \(\mathcal{W}_1 \in \mathcal{B}_1^* \), then black a ball \(\mathcal{B}_2 \in \mathcal{W}_1^\beta \), and so forth.

Next let \(M \) be the real line and \(\Omega = \Omega' \) the set of all closed intervals of positive length. For \(\alpha \) take the identity mapping. If \(I \) is a closed interval and \(c > 1 \) an integer, write \(^cI \) for the unique set of \(c \) closed intervals whose lengths are \(c^{-1} \) times that of \(I \), and which cover \(I \). Let \(^c\mathcal{F} \) be the \(\mathcal{F} \)-function with \(^c\mathcal{F}(I) = ^cI \).

Now let \(a > 1, b > 1 \) be integers, \(S \subseteq M \). The \((\alpha^a, \beta^b; S)\)-game is well defined. For convenience we call it \((a*b; S)\)-game.

A variant of the \((a*a)\)-game is the \(a\)-digit-game. Here \(\Omega' \) consists of a single element only, namely the unit-interval \(0 \leq x \leq 1 \). This game amounts to the following. First white chooses a digit \(c_1 \) to base \(a \), namely \(c_1 = 0, 1, \cdots, a - 2 \) or \(a - 1 \). Then black chooses a digit \(c_2 \), and so on. White is the winner if \(x = 0, c_1 c_2 \cdots \) (written in the scale of \(a \)) is in \(S \). Every \((a*a)\)-winning set is an \(a\)-digit-winning set.
Lemma 2. Let $0 < \alpha < 1$, $0 < \beta < 1$, $a > 1$, $b > 1$, where a, b are integers and where

$$ab\alpha\beta = 1, \quad a\alpha \geq 2.$$

Then every (a, β)-winning set on the real line is $(a*b)$-winning.

Proof. Here $\Omega = \Omega'$ consists of closed intervals of positive length, and α is the identity map. Thus we need not distinguish between $B \in \Omega$ and the set $B^* = \alpha(B) \subset M$. Let h_1, h_2, \ldots be an $(\alpha, \beta; S)$-winning strategy. Given B_1, \ldots, B_n, put $W_n = h_n(B_1, \ldots, B_n)$. The length $l(W_n)$ of W_n satisfies $l(W_n) = \alpha l(B_n) \geq 2a^{-1}l(B_n)$. Hence there is a $W_n \in ^*B_n$, $W_n \subset W_n$. Put $f_n(B_1, \ldots, B_n) = W_n$. We claim f_1, f_2, \ldots to be an $(a*b; S)$-winning strategy. Suppose (1), (2) hold with $\Theta = b\Theta$. Then

$$(4) \quad B_n \in W_{n-1}^\theta \quad (n = 2, 3, \ldots),$$

$$(5) \quad W_n = h_n(B_1, \ldots, B_n) \quad (n = 1, 2, \ldots)$$

hold. (4) is true because $B_n \subset W_{n-1} \subset W_{n-1}^\theta$, $B_n \in ^*W_{n-1}, W_{n-1} \in W_{n-1}^{(\alpha\theta)}$, and $(aab)^{-1} = \beta$. By (4), (5), B_1, B_2, \ldots is a h_1, h_2, \ldots-chain of the $(\alpha, \beta; S)$-game, and $P)B_n$ is in S.

Lemma 3. Let $0 < \alpha < 1$, $0 < \beta < 1$, $a > 1$, $b > 1$,

$$ab\alpha\beta = 1, \quad b\beta \geq 2$$

where a, b are integers. Then every $(a*b)$-winning set is also (α, β)-winning.

Proof. Let h_1, h_2, \ldots be an $(a*b; S)$-winning strategy. Define f_n by induction on n as follows. Given a closed interval B, pick some $B_1 \in B_1^{(\theta)}$, then $W_1 = h_1(B_1)$. Define $f_1(B_1) = W_1$. Given B_1, \ldots, B_n, $n > 1$, put $W_{n-1} = f_{n-1}(B_1, \ldots, B_{n-1})$, and pick B_n such that $B_n \subset B_n$, $B_n \in ^*W_{n-1}$. This is possible since $l(B_n) = \beta l(W_{n-1}) \geq 2b^{-1}l(W_{n-1})$. (Here we used $B_n \subset W_{n-1}^\theta$. If this is not the case, the sequence B_1, B_2, \ldots, B_n will not occur in a play, and $f_n(B_1, \ldots, B_n)$ can be defined arbitrarily.) Now put $f_n(B_1, \ldots, B_n) = h_n(B_1, \ldots, B_n)$. We claim f_1, f_2, \ldots is an $(\alpha, \beta; S)$-winning strategy. Suppose (1), (2) hold with $\Theta = \Theta^\theta$. Then

$$\overline{B}_n \in ^*W_{n-1} \quad (n = 2, 3, \ldots),$$

$$W_n = h_n(B_1, \ldots, B_n) \quad (n = 1, 2, \ldots).$$

Hence $\overline{B}_1, \overline{B}_2, \ldots$ is a h_1, h_2, \ldots-chain for the $(a*b)$-game. $\bigcap B_n$ is in S and $\bigcap W_n$ is in S.

4. More about (α, β)-winning sets. Again let Ω be the set of “balls” $B = (\rho, c)$, where $\rho > 0$ and $c \in M$. Given a ball B of center c and radius ρ and a point $x \in M$ write

$$e(x, B) = d(x, c)\rho^{-1}.$$

One has $e(x, B) = 0$ if and only if $x = c$, $e(x, B) \leq 1$ if and only if $x \in \alpha(B)$.

Lemma 4. Let $e = e(x, B) \leq 1$ and $0 < \gamma < 1$. Every ball $B' \in B'$ has $e' = e(x, B')$ in the interval

$$\max(0, (e + \gamma - 1)\gamma^{-1}) \leq e' \leq (e + 1 - \gamma)\gamma^{-1}.$$

If $\gamma \leq 1 - e$, there is always a ball $B' \in B'$ having $e' = e(x, B') = 0$. Moreover, if M is a Banachspace of positive dimension with distance $d(y, z) = |y - z|$, then for every e' in the interval (6) there is a $B' \in B'$ with $e(x, B') = e'$.

Proof. Let B have center c and radius ρ, $B' \in B'$ center c' and radius $\rho' = \gamma \rho$.

\[e' = \frac{d(x, c')\rho'^{-1}}{} = \frac{(d(x, c) + d(c, c'))\rho'^{-1}}{} \leq (d(x, c) + \rho - \rho')\rho'^{-1} \]

\[= (d(x, c)\rho^{-1} + 1)\rho\rho'^{-1} - 1 = (e + 1)\gamma^{-1} - 1 = (e + 1 - \gamma)\gamma^{-1}, \]

\[e' \geq (d(x, c) - d(c, c'))\rho'^{-1} \geq (d(x, c) - \rho + \rho')\rho'^{-1} = (e + \gamma - 1)\gamma^{-1}. \]

Hence (6) always holds.

Now let $\gamma \leq 1 - e$. The ball B' with center x and radius $\gamma \rho$ is in B, since $\gamma \rho + d(c, c) = \gamma \rho + e\rho \leq \rho$. Here $e' = e(x, B') = 0$. Next, let M be a Banachspace and $\gamma > 1 - e$. Let B' be the ball with center $c' = c - e^{-1}(\gamma - 1)(x - c)$ and radius $\rho' = \gamma \rho$. Now $\gamma \rho + d(c', c) = \gamma \rho + d(c, c)(1 - \gamma)e^{-1} = \gamma \rho + e\rho(1 - \gamma)e^{-1} = \rho$, hence $B' \subseteq B'$. Furthermore, $e' = e(x, B') = d(x, c')\rho'^{-1} = d(x, c)(1 - (\gamma - 1)e^{-1})\gamma{\rho'}^{-1} = e\rho(1 + (\gamma - 1)e^{-1})(\gamma \rho)^{-1} = (e + \gamma - 1)\gamma^{-1}$. Thus if M is a Banachspace, there is always a $B' \subseteq B'$ whose $e' = e(x, B')$ is the left endpoint of the interval (6).

Let $e > 0$, put $c' = c + e^{-1}(\gamma - 1)(x - c)$ and let B' be the ball with center c' and radius $\rho' = \gamma \rho$. $d(c, c') = d(x, c)(1 - \gamma)e^{-1} = (1 - \gamma)e^{-1} = \rho = \rho' - \rho'$, and therefore $B' \subseteq B'$. Also $e' = e(x, B') = d(x, c')\rho'^{-1} = d(x, c)(1 - (\gamma - 1)e^{-1})\gamma^{-1} = e\rho(1 - (\gamma - 1)e^{-1})\gamma^{-1} = (e + 1 - \gamma)\gamma^{-1}$. If $e = 0$, let c' be any point having $d(c, c') = \rho = \rho = 1 - \gamma)\rho$, and let B' be the ball with center c' and radius $\rho' = \gamma \rho$. Then $B' \subseteq B'$ and $e' = e(x, B') = d(x, c')\rho'^{-1} = d(x, c)(1 - \gamma)\rho^\gamma^{-1} \rho^{-1} = (1 - \gamma)\gamma^{-1}$. Hence if M is a Banachspace there is always a ball $B' \subseteq B'$ whose $e' = e(x, B')$ equals the right endpoint of the interval (6). Since for $B' \subseteq B'$, $e' = e(x, B')$ depends continuously on the center c' of B', there is a ball $B' \subseteq B'$ whose $e(x, B')$ equals e', where e' is an arbitrary number in the interval (6).

Lemma 5. Suppose $0 < \alpha < 1$, $0 < \beta < 1$, $2\alpha \geq 1 + \alpha \beta$. Then the only (α, β)-winning set is M itself.

Proof. Let $x \in M$. Black may choose B_1 with center x. Hence $e_1 = e_1(x, B_1) = 0$. Then $W_1 \subseteq B_1^\alpha$ satisfies $e'_1 = e_1(x, W_1) \leq (1 - \alpha)\alpha^{-1}$ by Lemma 4. Now $\beta \leq \beta + (2\alpha - 1 - \alpha \beta)\alpha^{-1} = 2 - \alpha^{-1} = 1 - (1 - \alpha)\alpha^{-1} \leq 1 - e'_1$, hence by Lemma 4 black can choose $B_2 \subseteq W_1^\alpha$ with $e_2 = e(x, B_2) = 0$. Thus B_2 also has center x. In this fashion black can enforce that x is the center of every ball B_n.

Then x is in the intersection of the "ballsets" $\alpha(B_n) = B_n^*$ and every winning set S must contain x. Since x was arbitrary, $S = M$.

Lemma 6. Let $0 < \alpha < 1$, $0 < \beta < 1$, $2\beta \geq 1 + \alpha\beta$. Then every dense set S is (α, β)-winning.

Proof. Let S be dense, and suppose black picks a ball with center c and radius ρ. There is an $x \in S$ having $d(x, c) \leq (1 - \alpha)\rho$. White may pick $W_1 \subseteq B_n^*$ with center x. Now, using the same method black used in Lemma 5, white can enforce that all the balls W_n have center x.

Lemma 7. Let M be a Banach space of positive dimension, $0 < \alpha < 1$, $0 < \beta < 1$, $2\alpha < 1 + \alpha\beta$. Then any set R obtained by removing a finite number of points from a winning set S is again a winning set.

Proof. Let R be obtained from the winning set S by removing x. If black picks B_1 such that $x \not\in B_1^*$, then of course white can win. If in fact at some stage of a play there occurs a B_n with $x \not\in B_n^*$, then white can win. Hence it suffices to show that white can play in such a way that $x \not\in B_n^*$ for some n.

Assume $x \in B_1^*$ and set $e_1 = e(x, B_1) \leq 1$. White can pick a ball W_1 having $e'_1 = e(x, W_1)(e_1 + 1 - \alpha)x^{-1}$ by Lemma 4. If $e'_1 > 1$, $x \not\in W_1^*$ and we are through. Otherwise $e'_1 + \beta - 1 = (e_1 + 1 - \alpha)x^{-1} + \beta - 1 = e_1x^{-1} + (1 + \alpha\beta - 2\alpha)x^{-1} > 0$ and $B_2 \subseteq W_1^*$ satisfies $e_2 = e(x, B_2) \leq e_1x^{-1} + (1 + \alpha\beta - 2\alpha)(\alpha\beta)^{-1} > e_1(\alpha\beta)^{-1}$ by Lemma 4.

Generally, if $x \in B_n^*$, white can play such that either $x \not\in W_n^*$ or $e(x, B_{n+1}) > (\alpha\beta)^{-1} e(x, B_n)$.

Since $(\alpha\beta)^{-1} > 1$, there will sooner or later occur a ball B_m with $x \not\in B_m^*$.

Lemma 8. Let $0 < \alpha < 1$, $0 < \beta < 1$, $0 < \alpha' < 1$, $0 < \beta' < 1$, $\alpha\beta = \alpha'\beta'$. Then every (α, β)-winning set is also (α', β')-winning.

Proof. Assume $\alpha' < \alpha$. Let h_1, h_2, \ldots be an $(\alpha, \beta; S)$-winning strategy. Given B_1, \ldots, B_n, write $W_n = h_n(B_1, \ldots, B_n)$ and put $f_n(B_1, \ldots, B_n) = W_n$. Suppose (1), (2) hold with $G' = G^{\alpha'}$. Then

$$B_n \in W_n^{\beta'a'/n} = W_n^{\beta'a'/n}$$

$$W_n = h_n(B_1, \ldots, B_n) \quad (n = 1, 2, \ldots).$$

Hence B_1, B_2, \ldots is a h_1, h_2, \ldots-chain of the (α, β)-game and $\bigcap B_n^*$ is in S. Therefore f_1, f_2, \ldots is an $(\alpha', \beta'; S)$-winning strategy.

Lemma 9. Every (α, β)-winning set is $(\alpha(\beta\alpha)^k, \beta)$-winning for $k = 0, 1, 2, \ldots$.

Proof. Suppose in the (α, β)-game, white not only makes his choices of the balls W_n but also of the balls B_n, except those where $(k + 1)|(n - 1)$ (that is, $k + 1$
divides \(n - 1 \). Thus black can pick only every \((k + 1)\)st ball \(B_a \), namely \(B_1, B_{1 + (k + 1)}, B_{1 + 2(k + 1)}, \ldots \). The balls

\[B_1, W_{k+1}, B_{1 + (k + 1)}, W_{2(k + 1)}, B_{1 + 2(k + 1)}, \ldots \]

are balls of an \((\alpha(\beta a)^k, \beta)\)-play. If white can win the \((\alpha, \beta)\)-game it certainly can win the \((\alpha(\beta a)^k, \beta)\)-game.

Corollary. Let \(\alpha' \beta' = (\alpha \beta)^k \) for some integer \(k \geq 0 \) and \(\beta' \geq \beta \). Then every \((\alpha, \beta)\)-winning set is \((\alpha', \beta')\)-winning.

Proof. Combine Lemmas 8 and 9.

Problem. Is it true that an \((\alpha, \beta)\)-winning set is necessarily \((\alpha', \beta')\)-winning if \(\alpha' \leq \alpha, \beta' \geq \beta \)? In particular is this true if \(M \) is the real line?

5. **Behavior of winning sets under local isometries.** Let \(M, M' \) be metrical spaces with distance-functions \(d(x, y) \) and \(d'(x', y') \), respectively. Assume that for every ball \(B \) of \(M \), \(\sigma(B) = B' \) is compact, and make the same assumption on \(M' \). \(M, M' \) are then locally compact and complete. Let \(\sigma \) be a homeomorphism from \(M \) onto \(M' \). The function

\[\tilde{\mu}(x, y) = d'(\sigma(x), \sigma(y))/d(x, y) \]

is defined and continuous for \(x \neq y \). We call \(\sigma \) a local isometry if \(\tilde{\mu} \) can be continued to a function \(\mu \) which is defined, continuous and \(\neq 0 \) for all \(x, y \) in \(M \).

Theorem 1. Let \(\sigma \) be a local isometry from \(M \) onto \(M' \). Let \(S \subset M \) be an \((\alpha, \beta)\)-winning set. Then \(S' = \sigma(S) \subset M' \) is an \((\alpha', \beta')\)-winning set if \(\alpha' \beta' = \alpha \beta, \alpha' < \alpha \).

We first need a lemma. Write \(\tau \) for the inverse map of \(\sigma \) and define \(v(x', y') \) for \(x', y' \in M' \) by either of the following two equivalent formulæ:

\[v(x', y') = 1/\mu(\tau(x'), \tau(y')) \]

When \(x' \neq y' \), \(v(x', y') = d(\tau(x'), \tau(y'))/d'(x', y') \). Given \(\lambda > 0 \) and a ball \(B \) of \(M \) with center \(c \) and radius \(\rho \) write \(\sigma(\lambda, B) \) for the ball \(B' \) of \(M' \) with center \(\sigma(c) \) and radius \(\lambda \rho \). Given \(\lambda > 0 \) and a ball \(B' \) of \(M' \) with center \(c' \) and radius \(\rho' \) write \(\tau(\lambda, B') \) for the ball \(B \) of \(M \) with center \(\tau(c') \) and radius \(\lambda \rho' \). Denote the set of balls \(C' \subset B' \) with \(\rho'(C') \leq \delta \rho'(B') \) by \(B'^{\delta} \).

Lemma 10. Let \(B' \) be a ball of \(M' \), and \(\varepsilon > 0 \). Put \(v_0 = \max v(x', y') \), taken over all \((x', y') \in B'^{\bullet} \times B'^{\bullet}

There exists a \(\delta = \delta(B', \varepsilon) > 0 \) such that every \(C' \in B'^{\delta} \) has the following property.

Put \(\nu = v(c', c') \) and \(\mu = v^{-1} = \mu(\tau(c'), \tau(c')) \), where \(c' \) is the center of \(C' \). Now for any ball \(D' \subset C' \) of \(M' \) and any ball \(D \) of \(M \),

\[D \subset \tau(\nu(1 - \varepsilon), D') \Rightarrow \sigma(\mu(1 - \varepsilon), D) \subset D'. \]
On the other hand, if E is a ball of M with $E \subset \tau(v_0, C')$ and E' a ball of M',

(10) \[E' \subset \sigma(\mu(1 - \varepsilon), E) \text{ implies } \tau(\eta(1 - \varepsilon), E') \subset E. \]

Proof. Let $B = \tau(2v_0, B')$. $\mu(x, y)$ is uniformly continuous and bounded from below in $B^* \times B^*$. Hence there is an $\eta = \eta(B', \varepsilon) > 0$ such that

(11) \[\left| \frac{\mu(x_1, y_1)}{\mu(x_2, y_2)} - 1 \right| < \varepsilon \]

if x_1, x_2, y_1, y_2 are in B^* and $d(x_1, x_2) \leq \eta$, $d(y_1, y_2) \leq \eta$.

Set $\delta = \eta(3v_0\rho(B'))^{-1}$, let $C' \in B'(-\delta, -\delta)$ and suppose D, D' satisfy the hypothesis of (9). Now if $D = (d, \rho_d)$, $D' = (d', \rho_{d'})$, $B' = (b', \rho_{b'})$, $C' = (c', \rho_{c'})$

(12) \[\rho_d + d(d, \tau(d')) \leq \nu(1 - \varepsilon)\rho_d. \]

Now since $D' \subset C' \subset B'$, $d'(d', b') \leq \rho_{b'}$, whence $d(d'(d'), (b')) \leq \nu_0\rho_{b'}$. Similarly, $d(d'(c'), (b')) \leq \nu_0\rho_{b'}$. Finally, by (12), $d(d, \tau(d')) \leq d(d, \tau(d')) + d(d'(d'), (c')) \leq \nu_0\delta_1 + \eta/2 \leq \nu_0\delta_1 + \eta/2 \leq \eta$. Hence by (11),

\[\mu(d', d) < \mu(c', c')(1 + \varepsilon) = \mu(1 + \varepsilon). \]

Now

\[\mu(1 - \varepsilon)\rho_d + d'(\sigma(d), d') \leq \mu\rho_d + d(d, \tau(d'))d(d, \tau(d')) \]

\[\leq \mu(1 + \varepsilon)(\rho_d + d(d, \tau(d'))) \]

\[\leq \mu\nu(1 - \varepsilon)(1 + \varepsilon)\rho_d < \rho_d. \]

Thus the conclusion of (9) holds.

Hence to obtain (9), one may take $\delta = \delta_1$. Now, by symmetry, one may treat B as we did B'. There is a $\delta_2 > 0$, such that (10) holds if $C \subset B'(-\delta_2, -\delta_2)$, $E \subset C$, and if E is a ball of M'. We set $\delta = \min(\delta_1, \delta_2)$ and show (10) holds for $E \subset \tau(v_0, C')$.

By what we just said it suffices to verify $\tau(v_0, C') \in B'(-\delta, -\delta)$. We have $C' \subset B'(-\delta, -\delta)$, hence $\rho_c' \leq \delta \rho_b$ and $\rho_c' + d'(c', b') \leq \rho_b$. Since b', c' are in B'^*, $\nu_0\rho_{c'} + d(c', (b')) \leq \nu_0\rho_{c'} + \nu_0d'(c', b') \leq \nu_0\rho_{b'}$, whence $\tau(v_0, C') \subset B'$. Finally, the radius of $\tau(v_0, C')$ is $\nu_0\rho_{c'} \leq \delta \nu_0\rho_{b'} \leq \delta_2\rho_b$.

Proof of Theorem 1. Let the hypotheses of the theorem be satisfied. There is an $\varepsilon > 0$ such that $\alpha' = \alpha(1 - \varepsilon)^2, \beta' = \beta(1 - \varepsilon)^{-2}$. Suppose black starts with a ball B'_1. Choose $\delta = \delta(B'_1, \varepsilon)$. Since $\alpha'\beta' < 1$, some ball B' of the play will be in B'_1. Let $v = v(b'_j, b'_j)$, where b'_j is the center of B'_j, and $\mu = v^{-1}$. Then (9) will hold for balls $D' \subset B_j'$ of M' and balls D of M, while (10) will hold for balls $E \subset \tau(v_0, B_j')$.
of \(M \) and \(E' \) of \(M' \), where \(v_0 = \max(x', y') \), taken over all \((x', y') \in B_1^* \times B_1^*\).

We may assume this already to be true for \(j = 1 \).

Let \(f_1, f_2, \ldots \) be an \((\alpha, \beta; S)\)-winning strategy. We claim the functions \(f'_1, f'_2, \ldots \)
defined by

\[
f'_n(B'_1, \ldots, B'_n) = \sigma(\mu(1 - \epsilon), f_n(\tau(1 - \epsilon), B'_1), \ldots, \tau(1 - \epsilon), B'_n)) \quad (n = 1, 2, \ldots)
\]

are an \((\alpha', \beta'; S')\)-winning strategy for plays beginning with our particular \(B'_1 \).

First we have to verify \(f''_n(B_1, \ldots, B_n) \in B^n'' \). For this purpose set \(B'_i = \tau(1 - \epsilon), B'_{n-i} \) \((i = 1, \ldots, n)\) and \(W_n = f_n(B_1, \ldots, B_n) \). Now \(W_n \subset B_n = \tau(1 - \epsilon), B'_n \), whence \(f'_n(B'_1, \ldots, B'_n) = \sigma(\mu(1 - \epsilon), W_n) \subset B'_n \) by (9). (After all, \(B'_n \subset B'_1 \).) A comparison of radii actually shows \(f'_n(B_1, \ldots, B_n) \in B^n'' \).

Now let balls \(B'_1, B'_2, \ldots; W'_1, W'_2, \ldots \) of \(M' \) satisfy

\[
B'_n \in W'^{n-1}' \quad (n = 2, 3, \ldots),
\]

\[
W'_n = f'_n(B'_1, \ldots, B'_n) \quad (n = 1, 2, \ldots).
\]

Put \(B_n = \tau(1 - \epsilon), B'_n \), \(W_n = f_n(B_1, \ldots, B_n) \) \((n = 1, 2, \ldots)\). One has \(B'_{n-1} \subset B'_1 \), hence \(\rho_{n-1}^0 + d'(b'_1, b'_{n-1}) \leq \rho_{n-1}^0 \), whence \(v_0 \rho_{n-1}^0 + d(\tau(b'_1), \tau(b'_{n-1})) \leq v_0 \rho_{n-1}^0 \), which gives \(\tau(v_0, B'_{n-1}) \subset \tau(v_0, B'_1) \). \(W_{n-1} \subset B_{n-1} = \tau(1 - \epsilon), B'_{n-1} \subset \tau(v_0, B'_{n-1}) \subset \tau(v_0, B'_1) \). Hence we may apply (10) with \(E = W_{n-1} \) and see that \(B'_n \subset W'_{n-1} = f''_{n-1}(B'_1, \ldots, B'_{n-1}) = \sigma(\mu(1 - \epsilon), W_{n-1}) \) implies

\[
B_n = \tau(1 - \epsilon), B'_n \subset W_{n-1} \quad (n = 2, 3, \ldots).
\]

Using this and \(W_n = f_n(B_1, \ldots, B_n) \) \((n = 1, 2, \ldots)\), we conclude \(x = \bigcap B^*_n \in S \).

Let \(\epsilon' = \bigcap B^*_n \). This implies \(d'(x', b'_n) \leq \rho_{n-1}^0 \), whence \(d(\tau(x'), b'_n) = d(\tau(x'), \tau(b'_n)) \leq v_0 \rho_{n-1}^0 \). Since \(b_n \) tends toward \(x \) and \(\rho_{n-1} \to 0 \), \(\epsilon' = \chi'(x') = x \), whence \(x' = \chi(x) \in \sigma(S) = S' \).

6. \(\alpha \)-winning sets. Let \(0 < \alpha < 1 \). Call a subset \(S \) of a complete metrical space \(\alpha \)-winning, if it is \((\alpha, \beta)\)-winning for every \(\beta, 0 < \beta < 1 \).

Lemma 11. Let \(0 < \alpha' < \alpha < 1 \). Then every \(\alpha \)-winning set is \(\alpha' \)-winning.

Proof. Given any \(\beta' \), \(0 < \beta' < 1 \), there exists a \(\beta, 0 < \beta < 1 \), such that \(\alpha \beta = \alpha' \beta' \). \(S \) is \((\alpha, \beta)\)-winning, hence \((\alpha', \beta')\)-winning by Lemma 8.

Lemma 12. The only \(\alpha \)-winning set \(S \subset M \) with \(\alpha > 1/2 \) is \(S = M \) itself.

Proof. There is a \(\beta, 0 < \beta < 1 \), having \(2 \alpha \geq 1 + \alpha \beta \). The result is now an immediate consequence of Lemma 5.

Let \(S \subset M \). Define the winning dimension of \(S \),

\[
\text{windim } S,
\]
as follows. Windim \(S = 0 \) if \(S \) is \(\alpha \)-winning for no \(\alpha > 0 \). Otherwise windim is the least upper bound of all \(\alpha \) in \(0 < \alpha < 1 \) such that \(S \) is \(\alpha \)-winning. It follows from Lemma 12 that windim \(S = 1 \) if and only if \(S = M \); otherwise \(0 \leq \text{windim } S \leq 1/2 \).
Lemma 13. Let M, M' be metrical spaces such that for balls B of M and B' of M', $\alpha(B)$ and $\alpha(B')$ are compact. Let σ be a local isometry from M onto M' and let $S \subset M$. Then

$$\text{windim} \sigma(S) = \text{windim} S.$$

Proof. Apply Theorem 1.

Theorem 2. The intersection of countably many α-winning sets is α-winning.

Corollary. Windim $\left(\bigcap_{j=1}^{\infty} S_j \right) = \text{g.l.b.} (\text{windim} S_j)$.

Proof of Theorem 2. We have to show that $S = \bigcap S_j$ is α-winning if each of the sets S_j is. We show that S is (α, β)-winning, say. White will win by playing according to the following rule.

At the first, third, fifth, \cdots move, white moves according to an $(\alpha, \alpha \beta; S_1)$-winning strategy. Since $B_{2l+1} \in B_{2^{l-1}}^*$, white can enforce in this way that $\bigcap B_n^*$ is in S_1, no matter what strategy he uses in his second, fourth, sixth, \cdots move.

At the second, sixth, tenth, \cdots move, white uses an $(\alpha, \alpha(\beta \alpha)^2; S_2)$-winning strategy. Generally, at the kth move, where $k \equiv 2^{l-1} \pmod{2^l}$, white moves as if he were playing the $(\alpha, \alpha(\beta \alpha)^{2^{l-1}}; S)$-game, and thus can enforce that $\bigcap B_n^*$ is in S.

Our rule amounts to this: Let $f_1, f_2, \cdots (l = 1, 2, \cdots)$ be an $(\alpha, \alpha(\beta \alpha)^{2^{l-1}}; S_l)$-winning strategy. We now define a strategy f_1, f_2, \cdots as follows. For $k \equiv 2^{l-1} \pmod{2^l}$ and $k = 2^{l-1} + (t - 1)2^l$, set

$$f_k(B_1, \cdots, B_t) = f_t(B_{2^{l-1}}, B_{2^{l-1} + 2^l}, \cdots, B_{2^{l-1} + (t-1)2^l}).$$

Then

$$B_{2^{l-1} + (t-1)2^l}^* \in W_{2^{l-1} + (t-2)2^l}^{\alpha(\beta \alpha)^{2^{l-1}}} \quad (t = 2, 3, \cdots),$$

$$W_{2^{l-1} + (t-1)2^l} = f_t(B_{2^{l-1}}, \cdots, B_{2^{l-1} + (t-1)2^l}) \quad (t = 1, 2, \cdots),$$

and the intersection

$$\bigcap_{t=1}^{\infty} B_{2^{l-1} + (t-1)2^l}^*$$

is in S_t ($l = 1, 2, \cdots$).

Lemma 14. Let M be a Banachspace. Let T be obtained from an α-winning set S, $S \subset M$, $0 < \alpha \leq 1/2$, by deleting at most countably many points. Then T is also α-winning.

Proof. Let T be obtained by removing the points x_1, x_2, \cdots from S, and let T_j be obtained by removing x_1, \cdots, x_j from S. Each of the sets T_j is α-winning by Lemma 7, hence T is α-winning by Theorem 2.
7. **Badly approximable numbers.** In this section M is the space of real numbers with the usual metric, and the badly approximable numbers are considered as subset of M.

From here until the end of §12, α will be 1-1. Hence we need not and will not distinguish between elements $B \in \Omega$ and sets $B^* = \alpha(B) \subset M$.

Theorem 3. The set S of badly approximable numbers is (α, β)-winning for every α, β having $0 < \alpha < 1$, $0 < \beta < 1$, $2\alpha < 1 + \alpha\beta$.

Corollary. Windim $S = 1/2$.

Remark. Badly approximable numbers can be generalized to n-tuples, and then the analogous theorem holds. See [1] or [7].

Proposition. Let $0 < \alpha < 1$, $0 < \beta < 1$, $\gamma = 1 + \alpha\beta - 2\alpha > 0$. Suppose black begins his play with a ball of radius ρ (= interval of length 2ρ). Put

$$\delta = \left(\gamma/2\right)\min\left(\rho, \alpha^2\beta^2\gamma/8\right).$$

Then white can enforce that $x = \bigcap B_\alpha$ satisfies $|x - p/q| > \delta q^{-2}$ for all integers p and $q \neq 0$.

Obviously this proposition implies the theorem. Note that reals x with $|x - p/q| > \delta q^{-2}$ have partial denominators $\leq \delta^{-1}$.

Lemma 15. Let α, β, γ be like in the proposition. Let the integer t satisfy $(\alpha\beta)^t < \gamma/2$. Assume a ball B_k with center b_k and radius ρ_k occurs in some (α, β)-play. Then white can play in such a way that B_{k+t} is contained in the "halfline" $x > b_k + \rho_k\gamma/2$.

Proof. Let $g^+ \in F_1^+$ be the function which assigns to an interval B of center c and length 2ρ the interval with center $c + \rho(1 - \alpha)$ and length $2\alpha \rho$. Now for given B_{k+t}, $0 \leq i < t$, white chooses $W_{k+i} = g^+(B_{k+i})$. Denote the center of B_k by b_n, the center of W_n by w_n ($n = 1, 2, \ldots$). Then $w_k = b_k + \rho_k(1 - \alpha)$, $b_{k+1} \geq w_k - \alpha\rho_k(1 - \beta) \geq b_k + \rho_k\gamma > b_k$, and $b_{k+t} \geq b_k + \rho_k\gamma$. Since B_{k+t} has radius $(\alpha\beta)^t\rho_k < \rho_k\gamma/2$, B_{k+t} is in the halfline $x > b_k + \rho_k\gamma/2$.

Proof of the Proposition. We may assume black starts with a ball B_1 of radius $\rho \leq \alpha\beta\gamma/8$. Otherwise, if $\rho > \alpha\beta\gamma/8$, there will be a first B_j in the course of the play having radius $\rho_j \leq \alpha\beta\gamma/8$, and then $\alpha^2\beta^2\gamma/8 \leq \rho_j \leq \alpha\beta\gamma/8$. Since both $\rho > \alpha^2\beta^2\gamma/8$ and $\rho_j > \alpha^2\beta^2\gamma/8$, it does not matter whether δ is defined using ρ or ρ_j, and white can play as if B_j were the first black ball. Hence assume

$$\rho \leq \alpha\beta\gamma/8.$$

Choose the integer t such that $\alpha\beta\gamma/2 \leq (\alpha\beta)^t < \gamma/2$ and define $R > 0$ by

$$R^2(\alpha\beta)^t = 1.$$

To prove the proposition it will suffice to show that white can play in such a way that
Badly approximable numbers and certain games

(14) \(|x - p/q| > \delta q^{-2}\)

whenever \((p, q) = 1\) (that is, \(p\) and \(q\) are relatively prime),

(15) \(x \in B_{n+1}\) and \(0 < q < R^n\)

for some integer \(n \geq 0\).

Clearly (14) holds if (15) holds for \(n = 0\), since \(0 < q < R^0 = 1\) has no integral solution \(q\). Suppose \(B_1, B_{r+1}, B_{2r+1}, \cdots, B_{(k-1)r+1}\) are already such that (14) holds if (15) holds for \(0 \leq n \leq k - 1\). Now in the next moves white has to worry only over fractions \(p/q\) where \(R^{k-1} \leq q < R^k\). In fact white has to worry over at most one such fraction: If \(|x - p/q| < \delta/q^2, |x' - p'/q'| < \delta/q'^2\), where \(R^{k-1} \leq q < R^k, R^{k-1} \leq q' < R^k\), \(p/q \neq p'/q'\), \(x, x'\) both in \(B_{(k-1)r+1}\), then \(|p/q - p'/q'| \leq \delta/q^2 + \delta/q'^2 + 2\rho(B_{(k-1)r+1}) \leq 2\delta R^{2-2k} + 2\rho(\alpha\beta)^{(k-1)r} = 2(\rho + \delta)R^{2-2k} < 4\rho R^{2-2k} \leq \frac{1}{2}\beta\gamma R^{2-2k} = \frac{1}{2}\beta\gamma(\alpha\beta)^{-1}R^{-2k} \leq R^{-2k}\), while on the other hand \(|p/q - p'/q'| \geq 1/(qq') > R^{-2k}\), which gives a contradiction.

Hence white has to worry over at most one subinterval \(C\) of \(B_{(k-1)r+1}\) of length \(2\rho(C) \leq 2\delta/q^2 \leq 2\delta R^{2-2k}\). Now if \(C\) has its center to the left or on the center \(b\) of \(B_{(k-1)r+1}\), \(C\) is contained in the halfline \(x \leq b + \delta R^{2-2k} = b + \delta(\alpha\beta)^{(k-1)r} = \frac{b + \rho(B_{(k-1)r+1})}{\rho} \leq b + \rho(B_{(k-1)r+1})/\rho 2\), where \(\rho(B_{(k-1)r+1})\) is the radius of \(B_{(k-1)r+1}\). By Lemma 15 white can enforce that \(B_{kr+1}\) is contained in \(x > b + \rho(B_{(k-1)r+1})/\rho\), and \(B_{kr+1}\) has empty intersection with \(C\). The reasoning is similar if the center of \(C\) is to the right of the center of \(B_{(k-1)r+1}\).

There is an analogy of \(\alpha\)-winning sets with residual sets (= complements of sets of first category) in so far, as countable intersections of residual sets are again residual sets. By definition, residual sets are sets \(T\) with the property that every intersection \(T \cap O\) with a nonempty open set \(O\) contains a nonempty open set \(O'\), as well as countable intersections of sets with this property.

The numbers with unbounded partial denominators in their continued fraction are a residual set. This set is the intersection of the sets \(T_k\) of numbers with at least one partial denominator \(\geq k\), and it is easy to see that every intersection of \(T_k\) with an open interval contains an open interval.

Thus the set of numbers with unbounded partial denominators is a residual set but not a winning set, and the set of numbers with bounded partial denominators is \(\alpha\)-winning for \(0 < \alpha \leq 1/2\), but is a set of first category. This is in contrast to the situation for the Banach-Mazur game [6, Theorem 1].

8. Anormal numbers.

Theorem 4. Let \(0 < \alpha < 1, 0 < \beta < 1, \gamma = 1 + \alpha \beta - 2\alpha > 0\). Let \(g\) be an integer so large that

(16) \(g > 4(\alpha \beta \gamma)^{-1}\)

and let \(d\) be a digit in the scale of \(g\), i.e., \(d = 0, 1, \cdots, g - 2\) or \(g - 1\). The set \(S\)
of reals x in whose "decimal" expansion to scale g the digit d occurs at most finite number of times is (α, β)-winning.

Corollary. The sets S_s^* of numbers x which are not normal to base s is (α, β)-winning, and therefore $\text{windim } S_s^* = 1/2$.

Proof of the Corollary. Some integral power g of s satisfies (16). The set of numbers with only finitely many zeros in their expansion to scale g is contained in the set of numbers not normal to scale g, which is the same as the set of numbers not normal to scale s. Hence this latter set is (α, β)-winning by the theorem.

Proof of Theorem 4. Let black begin with the ball B_1 of radius ρ. Choose integers $k \geq 1$, $n_0 \geq 1$ such that

$$g^{-k/4} > (\alpha \beta)^{n_0 - 1} \rho \geq (\alpha \beta) g^{-k/4}.$$

Define integers n_1, n_2, \cdots by

$$g^{-k-j/4} > (\alpha \beta)^{n_j - 1} \rho \geq (\alpha \beta) g^{-k-j/4} \quad (j = 1, 2, \cdots).$$

Then, since $\alpha \beta > 4/(g \gamma)$,

$$g^{-k-j/4} > (\alpha \beta)^{n_j - 1} \rho > g^{-k-j-1}/\gamma > g^{-k-j-1}/4 \quad (j = 1, 2, \cdots).$$

Thus $n_0 < n_1 < n_2 < \cdots$.

We are going to show that white can play such that every $x \in B_{n_j}$, $j \geq 1$, has its $(k+j)$th digit different from d. Let B_{n_j-1} be given. The numbers x whose $(k+j)$th digit equals d are in intervals of length g^{-k-j} whose distance is $\geq g^{1-k-j}/1-g \geq g^{1-k-j}/2 > 2(\alpha \beta)^{n_j-1-1} \rho = 2\rho(B_{n_j-1})$. Hence white has to worry over at most one interval $C \subset B_{n_j-1}$ of length $\leq g^{-k-j}$. Let us assume without loss of generality that the center of C is less or equal to the center b of B_{n_j-1}. Then C is contained in the halfline

$$x < b + g^{-k-j}/2 < b + (\alpha \beta)^{n_j-1-1} \rho /2 = b + \rho(B_{n_j-1}) \gamma /2.$$

Put $t = n_j - n_{j-1}$.

$$(\alpha \beta)^t = ((\alpha \beta)^{n_j-1} \rho/2) < (g^{-k-j}/4)/(g^{-k-j}/\gamma) = \gamma /4$$

and Lemma 15 applies. White can enforce $B_{n_j} = B_{n_{j-1}+1}$ to be in the set of x having $x > b + \rho(B_{n_{j-1}}) \gamma /2$, and hence can enforce that $C \cap B_{n_j}$ is empty.

9. Numbers with infinitely many zeros in their decimal.

Theorem 5. Let $g > 2$ be integral and let S_g be the set of reals which have infinitely zeros in their "decimal" to base g. Then S_g is $\alpha_g = ((g - 1)^2 + 1)^{-1}$-winning but not α-winning for $\alpha > \alpha_g$. Hence

$$\text{windim } S_g = \alpha_g = ((g - 1)^2 + 1)^{-1}.$$
Let \(k \geq 1, n \) be integers. Write \(I_k(n) \) for the interval \([ng^{-k}, ng^{-k} + (g - 1)^{-1} g^{-k}]\), \(K_k \) for the union of all intervals \(I_k(n) \), \(n = 0, \pm 1, \pm 2, \ldots \).

Lemma 16. Let \(I \) be a closed interval of length \(l(I) \leq (\alpha_g(g^2 - g))^{-1} \). There is a \(k \geq 1 \) and an interval \(J \in I^{*g}, J \subset K_k \).

Proof. Choose \(k \geq 1 \) satisfying

\[
(\alpha_g(g - 1)g^{k+1})^{-1} < l(I) \leq (\alpha_g(g - 1)g^k)^{-1}.
\]

We are going to construct an interval \(J^{*g} \subset I \cap K_k \) of length \(l(J^{*g}) \geq \alpha_g l(I) \).

\(K_k \) consists of intervals of length \((g - 1)^{-1} g^{-k} \), the complement of \(K_k \) of intervals of length \((g - 2) (g - 1)^{-1} g^{-k} \). The worst situation is when the midpoint \(c \) of \(I \) coincides with the midpoint of one of the intervals of the complement of \(K_k \). In this case \(I \) contains all numbers \(x \) in

\[
c \leq x \leq c + \frac{1}{2} l(I),
\]

and \(K_k \) contains all \(x \) in

\[
c + \frac{1}{2} (g - 2) (g - 1)^{-1} g^{-k} \leq x \leq c + \frac{1}{2} (g - 2)(g - 1)^{-1} g^{-k} + (g - 1)^{-1} g^{-k}
\]

\[
= c + \frac{1}{2} (g - 1)^{-1} g^{1-k}.
\]

Let \(J^{*g} \) consist of all \(x \) in

\[
c + \frac{1}{2} (g - 2)(g - 1)^{-1} g^{-k} \leq x \leq c + \min \left(\frac{1}{2} l(I), \frac{1}{2} (g - 1)^{-1} g^{1-k} \right).
\]

Obviously \(J^{*g} \subset I \cap K_k \). Furthermore,

\[
l(J^{*g}) - \alpha_g l(I)
\]

\[
= \min \left(\frac{1}{2} l(I), \frac{1}{2} (g - 1)^{-1} g^{1-k} \right) - \frac{1}{2} (g - 2)(g - 1)^{-1} g^{-k} - \alpha_g l(I)
\]

\[
= \min \left(\left(\frac{1}{2} - \alpha_g \right) l(I), \frac{1}{2} (g - 2)(g - 1)^{-1} g^{-k}, (g - 1)^{-1} g^{-k} - \alpha_g l(I) \right)
\]

\[
\geq \min \left(\frac{1}{2} g(g - 2) \alpha_g l(I) - \frac{1}{2} (g - 2)(g - 1)^{-1} g^{-k}, 0 \right) \geq 0
\]

by (20).

Proof of Theorem 5. Let \(ng^{-k} = c_0 + c_1 g^{-1} + \cdots + c_k g^{-k} \) where \(c_0, c_1, \ldots, c_k \) are integers, \(0 \leq c_j \leq g - 1 \) \((j = 1, \ldots, k) \). The interval \(I_k(n) \) now consists of all \(x \) satisfying

\[
c_0 + c_0 g^{-1} + \cdots + c_k g^{-k} \leq x \leq c_0 + c_1 g^{-1} + \cdots + c_k g^{-k} + g^{-k-1} + g^{-k-2} + \cdots.
\]
Hence if x is in the interior of $I_k(n)$, at least one of the digits c_{k+1}, c_{k+2}, \cdots of x is zero. In fact if x is in a closed subset C of the interior of $I_k(n)$, then at least one of the digits c_{k+1}, \cdots, c_{k+m} of x is zero, where $m = m(C)$.

We now are going to show that S_g is α_g-winning. Let $0 < \beta < 1$. In the (α_g, β)-game white plays arbitrarily until a ball B_{j_1} with $2\rho(B_{j_1}) \leq (\alpha_g(g^2 - g))^{-1}$ occurs. Now by the lemma, white can pick $W_{j_1} \subset K_{k_1}$, say $W_{j_1} \subset I_{k_1}(n_1)$. At his next move white can enforce that W_{j_1+1} is in the interior of $I_{k_1}(n_1)$. There is an m_1 such that every $x \in W_{j_1+1}$ has at least one of the digits $c_{k_1+1}, \cdots, c_{k_1+m_1}$ equal to zero. White can play arbitrarily again until $2\rho(B_{j_2}) \leq \alpha_{g^{-1}}(g - 1)^{-1} g^{-k_1-m_1}$. By the lemma, white can pick $W_{j_2} \subset K_{k_2}$ for some k_2, and obviously $k_2 \geq k_1 + m_1$. At his next move white chooses W_{j_2+1} in the interior of some $I_{k_2}(n_2)$, and so on.

This proves the first part of the theorem.

Let $\alpha > \alpha_g$. Choose m integral and so large that

$$\alpha > (1 + 2(g - 1)g^{3-m})\alpha_g,$$

and let $\beta = \alpha^{-1}g^{-m}$. We are going to show that S_g is (α, β)-losing.

Black can adopt the following strategy. First he picks the ball B_1 to consist of all x in

$$g^{-1} + g^{-2} \leq x \leq 2g^{-1} + g^{-3} + g^{-4} + \cdots = 2g^{-1} + g^{-2}(g - 1)^{-1},$$

B_1 has length $g^{-1} - g^{-2} + g^{-2}(g - 1)^{-1} = \alpha^{-1}g^{-2}(g - 1)^{-1}$.

For $u = 0, 1, \cdots, (g - 1)^2 + 1$ put $y_u = g^{-1} + g^{-2} + u(g - 1)^{-1} g^{-2}$. The numbers y_u are at distances $(g - 1)^{-1} g^{-2}$, they are contained in B_1, and $y_0, y_{(g-1)^2+1}$ are the endpoints of B_1.

W_1 will have length

$$l(W_1) = \alpha l(B_1) = \alpha \alpha^{-1}g^{-2}(g - 1)^{-1} > \alpha^{-2}(g - 1)^{-1}(1 + 2(g - 1)g^{3-m})$$

$$= g^{-2}(g - 1)^{-1} + 2g^{-1-\alpha^{-1}-m}$$

by (21). Let \tilde{W}_1 be the closed interval of length $g^{-2}(g - 1)^{-1}$ and with the same midpoint as W_1. \tilde{W}_1 will contain one of the points y_u, $1 \leq u \leq (g - 1)^2$; say $y_{u_0} \in \tilde{W}_1$. Hence W_1 will contain the interval

$$y_{u_0} - g^{-1-\alpha^{-1}-m} \leq x \leq y_{u_0} + g^{1-\alpha^{-1}-m}.$$
$y_{u_0} - g^{-m} \leq x < y_{u_0}$ has its first m digits different from zero. Now black picks B_2 to be the interval

$$y_{u_0} - g^{-m} + g^{-m}(g^{-1} + g^{-2}) \leq x \leq y_{u_0} - g^{-m} + g^{-m}(2g^{-1} + g^{-3} + g^{-4} + \cdots).$$

B_2 is contained in (22), hence in W_1, it has length

$$l(B_2) = g^{-m}l(B_1) = x^{-1}g^{-m}l(W_1) = \beta l(W_1),$$

and every $x \in B_2$ has its first m digits different from zero.

Next take the case (b) where u_0 is not a multiple of $g - 1$, say $u_0 = l(g - 1) + r$, $1 \leq r \leq g - 2$, $l \leq g - 2$. Now

$$y_{u_0} = g^{-1} + g^{-2} + l g^{-2} + r g^{-2}(g - 1)^{-1} = g^{-1} + (l + 1)g^{-2} + r(g^{-3} + g^{-4} + \cdots),$$

hence $y_{u_0} = 0, 1(l + 1)rrr \cdots$. Put $\bar{y} = y_{u_0} + g^{-m} - g^{-m-1} - g^{-m-2} - \cdots = y_{u_0} + g^{-m} - g^{-m}(g - 1)^{-1}$. $\bar{y} = 0, 1(l + 1)rrr \cdots r(r + 1)000 \cdots$, that is, \bar{y} has digits $1, l + 1, m - 3$ times r, $r + 1$, then zeros. Any x in the interval $\bar{y} \leq x < \bar{y} + g^{-m}$ has its first m digits different from zero. Now black picks B_2 to consist of all x satisfying

$$\bar{y} + g^{-m}(g^{-1} + g^{-2}) \leq x \leq \bar{y} + g^{-m}(2g^{-1} + g^{-3} + g^{-4} + \cdots).$$

B_2 is in (22) hence in W_1, its length is $\beta l(W_1)$, and every $x \in B_2$ has its first m digits different from zero.

Black does not have to worry over the first m digits any more. Since B_2 is congruent to $g^{-m}B_1$ modulo g^{-m}, black can apply the same strategy to ensure that the next m digits of any $x \in B_3$ again are all different from zero. Continuing in this way black can enforce that $x = \bigcap B_n$ has no zeros among its digits.

10. a^*-winning sets. Let $a > 1$ be integral. A set of reals is called a^*-winning if it is (a^*b)-winning for every integer $b > 1$.

Lemma 17. Let $a' = ab$, and a divides a'. Then every (a^*b)-winning set is (a'^*b')-winning.

Proof. Just as for Lemma 8.

Lemma 18. Every (a^*b)-winning set is $(a(ba)^kb)$-winning for every integer $k \geq 0$.

Proof. Just as for Lemma 9.

Lemma 19. Let a be a divisor of a'. Then every a^*-winning set is $a'^*-winning$.

Proof. This follows from Lemma 17.

Combining Lemma 2 and Theorem 3 one finds that the set of badly approximable numbers is a^*-winning for $a \geq 4$. A direct examination of the proof of
Theorem 3 shows this set to be a^*-winning for every $a \geq 2$. A similar remark applies to anormal numbers.

11. The Hausdorff dimension of winning sets. The Hausdorff dimension of a set S in a metrical space M is defined as follows. S has Hausdorff dimension ∞ if for some $\eta > 0$ S cannot be covered by countably many balls of radius $< \eta$. Otherwise put $\{S, \eta\}^a$ for the greatest lower bound (possibly ∞) of all the sums

$$
\sum_{l=1}^{\infty} \rho(B_l)^a,
$$

where B_1, B_2, \cdots is a covering of S by balls B_i of radius $< \eta$. $\{S, \eta\}^a$ is a decreasing function of η.

$$
\{S\}^a = \lim_{\eta \to 0} \{S, \eta\}^a
$$

(possibly ∞) is called a-dimensional measure of S. Either $\{S\}^a = \infty$ for every α, in which case S again has Hausdorff dimension ∞. Or there is a unique $\delta \geq 0$ such that $\{S\}^a = \infty$ for $\alpha < \delta$ and $\{S\}^a = 0$ for $\alpha > \delta$, and in this case one defines the Hausdorff dimension of S to be δ.

Theorem 6. Let M be a Hilbert space, and let $0 < \alpha < 1$, $0 < \beta < 1$. Assume there are integers t, m with the following property. Given h_1, h_2, \cdots, h_t with $h_i \in F^t_1 (i = 1, \cdots, t)$ and given a ball C_1, there are m functions $g^{(0)}, g^{(1)}, \cdots, g^{(m-1)}$ of F^β_1 such that, if $C_2^{(j)}, \cdots, C_t^{(j)}, D_1^{(j)}, \cdots, D_t^{(j)} (0 \leq j \leq m - 1)$ are balls defined by

$$
C_i^{(j)} = g^{(j)}(D_{i-1}^{(j-1)}) \quad (1 \leq i \leq t + 1),
$$

$$
D_1^{(j)} = h_j(C_1, C_2^{(j)}, \cdots, C_t^{(j)}) \quad (1 \leq i \leq t),
$$

then $C_t^{(0)}, \cdots, C_t^{(m-1)}$ have pairwise disjoint interiors.

Under these assumptions, every (α, β)-winning set $S \subset M$ has Hausdorff dimension at least

$$
\log m/|t \log \alpha \beta|.
$$

Corollary 1. Let $N(\beta)$ be such that every ball B contains a set of $N(\beta)$ balls of B^β with pairwise disjoint interiors. Then every (α, β)-winning set has Hausdorff dimension at least

$$
\log N(\beta)/|\log \alpha \beta|.
$$

For example on the real line one may put $N(\beta) = \lceil \beta^{-1} \rceil$. (That is, the integral part of β^{-1}.)

Proof. One may use the theorem with $t = 1$, $m = N(\beta)$.

Corollary 2. An α-winning set in n-dimensional Euclidean space E_n has Hausdorff dimension n.
Proof. One has \(N(\beta) \geq c\beta^{-n}\) for some \(c > 0\). This gives the lower bound
\[
(\log c + n \log \beta) \left(\frac{1}{\log \alpha} + \frac{1}{|\log \beta|} \right)^{-1},
\]
which tends to \(n\) when \(\beta\) tends to zero.

Corollary 3. Let \(1 + \alpha \beta > 2\beta\). Then every \((\alpha, \beta)\)-winning set in \(E_n\) has positive Hausdorff dimension, and an \((\alpha, \beta)\)-winning set in infinite-dimensional Hilbert-space has infinite Hausdorff dimension.

Proof. We first take the \(n\)-dimensional case. Write \(\gamma = 1 + \alpha \beta - 2\beta > 0\), and let the integer \(t > 1\) be so large that \((\alpha \beta)^t < \gamma/3\).

Let \(g^+, g^- (i = 1, \ldots, n)\) be the functions of \(F_\beta\) which assign to a ball \(B\) of radius \(\rho\) and center \((c_1, \ldots, c_n)\) the ball of radius \(\beta \rho\) and center
\[
(c_1, \ldots, c_{i-1}, c_i + \rho(1 - \beta), c_{i+1}, \ldots, c_n),
\]
respectively.

Let \(h_1 \in F_1, \ldots, h_t \in F_t\), and let \(C_1\) have center \(c = (c_1, \ldots, c_n)\) and radius \(\rho\). Let \(1 \leq j \leq n\) and let \(k\) denote \(+\) or \(-\). Define \(C_{ij}^k\), \(D_{ij}^k\) by
\[
C_{ij}^k = g_{ij}^k(D_{ij-1}^k),
\]
\[
D_{ij}^k = h_i(C_1, C_{ij}^k, \ldots, C_{ik}^k).
\]
Denote the center of \(C_{ij}^k\) by \((c_{ij}^k, \ldots, c_{ik}^k)\). Then
\[
c_{ij}^+ \geq c_j + \rho(1 - \beta - \beta(1 - \alpha)) = c_j + \rho \gamma > c_j,
\]
\[
c_{i+1}^+ \geq c_j + \rho \gamma.
\]
Hence \(C_{i+1}^+\), which has radius \(\rho(\alpha \beta)^t < \rho \gamma/3\), is contained in the halfplane
\[
x_j \geq c_j + 2\rho \gamma/3.
\]
Similarly, \(C_{i+1}^-\) is contained in \(x_j \leq c_j - 2\rho \gamma/3\).

Let \(l = l(\alpha, \beta)\) be an integer with \((l + 1)\gamma^2/9 > 1\). We claim that any ball \(C_{i+1}^k\) has nonempty intersection with at most \(l\) of the balls \(C_{i+1}^k\) \((j = 1, \ldots, n; k = +, -)\).

To show this it suffices to see that \(C_{i+1}^+\) can intersect at most \(l\) of these balls (including itself). By what has already been shown it cannot at the same time intersect \(C_{i+1}^+\) and \(C_{i+1}^-\). Thus it remains to show that \(C_{i+1}^+\) cannot intersect all the balls \(C_{i+1}^+, \ldots, C_{i+1}^+\) \((j = 2, \ldots, l + 1)\), and the center of \(C_{i+1}^+\) would have distance from the center \(c\) of \(C_1\) at least \(\rho \sqrt{(\gamma^2 + \beta^2/9)} > \rho \sqrt{(l + 1)\gamma^2/9} > \rho\).

Thus there exist

\[
m = \max(2, 2n/l)
\]

of the balls \(C_{i+1}^k (j = 1, \ldots, n; k = +, -)\) which are pairwise disjoint. We can pick \(m\) of the functions \(g^k\), say \(g^{(0)}, \ldots, g^{(m-1)}\), which satisfy the conditions of the theorem. Therefore \(S\) has Hausdorff dimension at least \(\log m/|t \log \alpha \beta| > 0\).

In the case of a Hilbertspace of infinite dimension the argument leading to (26) in the previous case shows that now one may take \(m\) arbitrarily large.
Remark. The results of this section are in contrast to Folgerung 1 of Satz 3 of [8] where a different game is studied.

Lemma 20. Put $\omega = 2\sqrt{3} - 1$. Let D, D_1, \cdots, D_e be balls in a Hilbertspace such that $\rho(D) < \omega \rho(D_1) = \cdots = \omega \rho(D_e)$. Let D_i, D_j have disjoint interiors for $i \neq j$, and let D, D_i have nonempty intersections for $i = 1, 2, \cdots, e$.

Then $e \leq 2$.

Proof. We may assume $\rho(D_1) = \cdots = \rho(D_e) = 1$. We have to show that the assumptions of the Lemma with $e = 3$ lead to a contradiction.

Let D have center 0, D_i center $x_i (i = 1, 2, 3)$. Then $|x_i| < 1 + \omega$, $|x_i - x_j| \geq 2$ for $i \neq j$. One obtains $|x_i|^2 < (1 + \omega)^2 = 4/3$, $4 \leq |x_i - x_j|^2 = |x_i|^2 + |x_j|^2 - 2x_i x_j$ (inner product) $< 8/3 - 2x_i x_j$, hence $x_i x_j < -2/3$ ($i \neq j$). This gives $x_i (x_2 + x_3) < -4/3$. On the other hand, $|x_i (x_2 + x_3)|^2 \leq |x_i|^2 |x_2 + x_3|^2 < (4/3)(8/3 + 2x_2 x_3) < 16/9$, which gives a contradiction.

Let S be (α, β)-winning, and let a winning strategy f_1, f_2, \cdots be given. Call a sequence of balls E_1, E_2, \cdots a $t-f_1, f_2, \cdots$-chain, if there is an f_1, f_2-chain B_1, B_2, \cdots such that $E_1 = B_1$, $E_2 = B_1 + t$, $E_3 = B_1 + 2t$, etc. Finite t-chains are defined similarly. In other words a t-chain consists of every ith element of a chain.

Lemma 21. Let all the hypotheses of the theorem be satisfied. Let E_1, E_2, \cdots, E_k be a $t-f_1, f_2, \cdots$-chain. Then there are m balls $E^{(0)}_1, \cdots, E^{(m-1)}_k$ with pairwise disjoint interiors such that each of the sequences $E_1, \cdots, E_k, E^{(j)}_{k+1} (j = 0, 1, \cdots, m-1)$ is a finite $t-f_1, f_2, \cdots$-chain.

Proof. Let B_1, \cdots, B_{k+1} be a f_1, f_2, \cdots-chain with $E_1 = B_1, \cdots, E_k = B_{k+1}$. Define $h_i(C_1, \cdots, C_i)$ ($i = 1, \cdots, t$) by $h_i(C_1, \cdots, C_i) = f_i + \rho(B_1, \cdots, B_{(i-1)}y, C_1, C_2, \cdots, C_i)$. Put $C_1 = B_{k+1}$, $E^{(0)}_1 = E^{(0)}_k$. Now let $g^{(0)}_1, \cdots, g^{(m-1)}_1$ be the functions of the theorem, and define $C^{(1)}_2, \cdots, C^{(1)}_{t+1}, D^{(1)}_1, \cdots, D^{(1)}_t (0 \leq j \leq m - 1)$ by (24) and (25). Put $E^{(j)}_{k+1} = C^{(j)}_{t+1}$. Then obviously $E_1, \cdots, E_k, E^{(j)}_{k+1}$ is a $t-f_1, f_2, \cdots$-chain for $0 \leq j \leq m - 1$, and the m balls $E^{(j)}_{k+1}$ have pairwise disjoint interiors.

Lemma 22. Let all the hypotheses of the theorem be satisfied. There are balls $C_1(i_1), C_2(i_1, i_2), \cdots$, defined for digits $i_j = 0, 1, \cdots, m - 1$, such that

$$C_1(i_1), C_2(i_1, i_2), C_3(i_1, i_2, i_3), \cdots$$

is a $t-f_1, f_2, \cdots$-chain for every sequence of digits i_1, i_2, \cdots, and where for given k the m^k balls $C_k(i_1, \cdots, i_k)$ have pairwise disjoint interiors and radius $(\alpha \beta)^k$.

Proof. Let $C_1(i_1)$ be any m disjoint balls of radius $(\alpha \beta)^i$. The construction of $C_2(i_1, i_2), C_3(i_1, i_2, i_3), \cdots$ is by induction, using the previous lemma.
Proof of Theorem 6. Given a sequence of digits \(i_1, i_2, \cdots\) there is a unique point \(x = x(i_1, i_2, \cdots)\) contained in all the balls \(C_k(i_1, \cdots, i_k), k = 1, 2, \cdots\) of Lemma 22. Obviously \(x \in S\). The set of all points \(x\) so obtained will be denoted by \(S^*\).

Define a possibly many-valued function \(f\) from \(S^*\) onto the unit-interval \(U: 0 \leq y \leq 1\), as follows. Given \(x \in S^*\), let \(f(x)\) consist of all numbers \(y = 0, i_1i_2\cdots\) (written in scale \(m\)) such that \(x = x(i_1, i_2, \cdots)\). For a set \(T \subset S^*\) let \(f(T)\) be the union of all sets \(f(x)\) where \(x \in T\). For a general set \(R\) define \(f(R) = f(R \cap S^*)\). Now if balls \(B_l (l = 1, 2, \cdots)\) cover \(S\), the sets \(B_l \cap S^*\) cover \(S^*\), and the sets \(f(B_l) = f(B_l \cap S^*)\) cover \(U\). Hence the exterior Lebesgue measures \(\bar{\mu}\) of \(f(B_l)\) satisfy

\[
\sum_{l=1}^{\infty} \bar{\mu}(f(B_l)) \geq 1.
\]

Let \(B\) have radius \(\rho\), and put

\[
j = \lceil \log(2\rho\omega^{-1})/(t\log \alpha \beta) \rceil.
\]

For small \(\rho\), \(j\) is positive, and

\[
\rho < \omega(\alpha \beta)^{\frac{1}{j}}.
\]

Hence by Lemma 20, \(B\) has nonempty intersection with at most two of the balls \(C_j(i_1, \cdots, i_j)\), say with \(C_j(i_1(1), \cdots, i_j(1))\) and \(C_j(i_1(2), \cdots, i_j(2))\). \(f(B)\) contains only numbers whose first \(j\) digits are either \(i_1(1), \cdots, i_j(1)\) or \(i_1(2), \cdots, i_j(2)\). Thus \(f(B)\) is contained in two intervals of length \(m^{-j}\), and \(\bar{\mu}(f(B)) \leq 2m^{-j}\).

Now suppose the balls \(B_1, B_2, \cdots\) of radius \(\rho_1, \rho_2, \cdots\) cover \(S\). By (27),

\[
1 \leq 2 \sum_{l=1}^{\infty} m^{-j_l},
\]

where \(j_l\) is defined by a formula like (28). This implies

\[
1 \leq 2m \sum_{l=1}^{\infty} (2\omega^{-1} \rho_l)^{\log m/|t\log \alpha \beta|}.
\]

We obtain \(\{S\}^* > 0\) with \(\alpha = \log m/|t\log \alpha \beta|\), and the theorem is proved.

Lemma 23. Let \(2\beta < 1 + \alpha \beta\) and let \(S\) be \((a, \beta)\)-winning in a Hilbertspace \(M\) of positive dimension. The intersection of \(S\) with any ball contains continuum-many points.

Proof. The proof of Corollary 3 of Theorem 6 shows that this theorem is applicable with some \(m > 1\) and with \(C_j^{(0)}, \cdots, C_j^{(m-1)}\) disjoint. Under this assumption the \(m^j\) balls \(C_j(i_1, \cdots, i_j)\) of Lemma 22 will be pairwise disjoint. One may also require that all the balls \(C_j(i_1, \cdots, i_j), j = 1, 2, \cdots, \) be contained in an arbitrary fixed ball \(B\) if one drops the inessential requirement on the radii.
of these balls. The points $x(i_1, i_2, \cdots)$ will now be continuum—many distinct points of $S \cap B$.

Theorem 7. Let $S \subset M$ be an $(\mathcal{F}, \mathcal{G})$-winning set. Then there exists a positional $(\mathcal{F}, \mathcal{G}; S)$-winning strategy.

Proof. Introduce a well-ordering $<$ into the set Ω. Let f_1, f_2, \cdots be an $(\mathcal{F}, \mathcal{G}; S)$-winning strategy. We are going to define $f \in F_1$ as follows.

Let $B \in \Omega$. If B does not occur in any f_1, f_2, \cdots-chain, define $f(B)$ arbitrarily. Now assume B does occur in f_1, f_2, \cdots-chains

$$B_1, B_2, \cdots, B_k = B.$$ Of all the B_1 which occur in such chains, there is one which is smallest with regard to $<$. Denote it by $B_1(B)$. There are chains

$$B_1(B), B_2, \cdots, B_k = B.$$ Of all the B_2 which occur in such chains, there is a smallest one, $B_2(B)$, and so on. Now either

(a) there is a k with $B_k(B) = B$. Then

$$B_1(B), \cdots, B_k(B) = B$$ is an f_1, f_2, \cdots-chain.

(aa) There is no f_1, f_2, \cdots-chain C_1, C_2, \cdots where each C_i is one of the elements $B_1(B), \cdots, B_k(B)$. If for every m there were a finite f_1, f_2, \cdots-chain C_1, \cdots, C_m with this property, then because of Lemma 1 there would also be an infinite such chain C_1, C_2, \cdots. Let $B_1(B), \cdots, B_{k_0}(B), C_1, \cdots, C_{l_0}$ be an f_1, f_2, \cdots-chain with each C_i among the $B_1(B), \cdots, B_{k_0}(B)$, such that there is no longer such chain. Set

$$f(B) = f_{k+1}(B_1(B), \cdots, B_k(B), C_1, \cdots, C_{l_0}).$$ If $B' \in \mathcal{G}(f(B))$, B' differs from $B_1(B), \cdots, B_k(B)$.

(ab) There is an f_1, f_2, \cdots-chain C_1, C_2, \cdots with each C_i among $B_1(B), \cdots, B_k(B)$. In this case $\bigcap_{i=1}^k \alpha(B_i(B)) \subseteq \bigcap_n \alpha(C_n) \subset S$. Hence $\alpha(B) = \alpha(B_k(B)) \subset S$, and $f(B)$ can be any element of $\mathcal{G}(B)$.

(b) There is no k having $B_k(B) = B$. Then $B_1(B), B_2(B), \cdots$ is an f_1, f_2, \cdots-chain, and $\alpha(B) \cap \bigcap_n \alpha(B_n) \subset S$. Again $f(B)$ can be arbitrary in $\mathcal{G}(B)$.

We are going to show that the functions $f_n(B_1, \cdots, B_n)$ defined by $f_n(B_1, \cdots, B_n) = f(B_n)$ ($n = 1, 2, \cdots$) are a winning strategy. Let $B_1 \in \Omega'$,

$$B_n \in \mathcal{G}(W_{n-1}) \quad (n = 2, 3, \cdots),$$

$$W_n = f(B_n) \quad (n = 1, 2, \cdots).$$
If for some B_n, case (ab) or (b) happens, $\alpha(B_n) \subset S$, and we are through. Thus for every B_n, assume (aa) holds.

$$B_1(B_n), \ldots, B_k(B_n), C_1, \ldots, C_{i_0}, B_{n+1}$$

is an f_1, f_2, \ldots chain, and B_{n+1} differs from $B_1(B_n), \ldots, B_k(B_n)$.

(29) $B_1(B_{n+1}) < B_1(B_n) \quad (n = 1, 2, \ldots)$.

There is an i_1 where $B_1(B_{i_1})$ is smallest with regard to $<$. By (29), $B_1(B_i) = B_1(B_{i_1}) = B_1$, say, if $i \geq i_1$. Now for $i > i_1$, B_i differs from $B_1(B_{i-1}) = B_1 = B_1(B_i)$. Thus $B_2(B_i)$ is defined. There is an $i_2 > i_1$ such that $B_2(B_{i_2}) = B_2(B_i)$ for $i \geq i_2$. In this fashion one finds $i_1 < i_2 < \ldots$ such that $B_i(B_i)$ is defined for $i > i_{i-1}$ and $B_i(B_i) = B_i(B_{i_1}) = B_i$ for $i \geq i_1$. B_1, B_2, \ldots is an f_1, f_2, \ldots chain by Lemma 1.

$$\bigcap_{i=1}^{\infty} \alpha(B_i) \subset \bigcap_{i=1}^{\infty} \overline{\alpha(B_i)} \subset S$$

gives the desired conclusion.

REFERENCES

University of Colorado, Boulder, Colorado