Groups with normal solvable Hall $p’$-subgroups
HTML articles powered by AMS MathViewer
- by D. S. Passman
- Trans. Amer. Math. Soc. 123 (1966), 99-111
- DOI: https://doi.org/10.1090/S0002-9947-1966-0195947-2
- PDF | Request permission
References
- Roger Carter and Paul Fong, The Sylow $2$-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151. MR 166271, DOI 10.1016/0021-8693(64)90030-4
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- I. M. Isaacs and D. S. Passman, A characterization of groups in terms of the degrees of their characters, Pacific J. Math. 15 (1965), 877–903. MR 191972, DOI 10.2140/pjm.1965.15.877
- Noboru Itô, Über den kleinsten $p$-Durchschnitt auflösbarer Gruppen, Arch. Math. (Basel) 9 (1958), 27–32 (German). MR 131455, DOI 10.1007/BF02287057
- W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513
- A. J. Weir, Sylow $p$-subgroups of the classical groups over finite fields with characteristic prime to $p$, Proc. Amer. Math. Soc. 6 (1955), 529–533. MR 72143, DOI 10.1090/S0002-9939-1955-0072143-9
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 123 (1966), 99-111
- MSC: Primary 20.40
- DOI: https://doi.org/10.1090/S0002-9947-1966-0195947-2
- MathSciNet review: 0195947