Compactification and duality of topological groups
Author:
Hsin Chu
Journal:
Trans. Amer. Math. Soc. 123 (1966), 310-324
MSC:
Primary 22.10
DOI:
https://doi.org/10.1090/S0002-9947-1966-0195988-5
MathSciNet review:
0195988
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Ei ichi Abe, Dualité de Tannaka des groupes algébriques, Tohoku Math. J. (2) 12 (1960), 327–332 (French). MR 120230, https://doi.org/10.2748/tmj/1178244444
- [2] Hirotada Anzai and Shizuo Kakutani, Bohr compactifications of a locally compact Abelian group. I, Proc. Imp. Acad. Tokyo 19 (1943), 476–480. MR 15122
- [3] Hirotada Anzai and Shizuo Kakutani, Bohr compactifications of a locally compact Abelian group. II, Proc. Imp. Acad. Tokyo 19 (1943), 533–539. MR 15123
- [4] C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton, New Jersey, 1946.
- [5] Pierre Cartier, Dualité de Tannaka des groupes et des algèbres de Lie, C. R. Acad. Sci. Paris 242 (1956), 322–325 (French). MR 75536
- [6] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR 0050886
- [7] Hans Freudenthal, Topologische Gruppen mit genügend vielen fastperiodischen Funktionen, Ann. of Math. (2) 37 (1936), no. 1, 57–77 (German). MR 1503269, https://doi.org/10.2307/1968687
- [8] Morikuni Goto, Note on a topology of a dual space, Proc. Amer. Math. Soc. 12 (1961), 41–46. MR 125898, https://doi.org/10.1090/S0002-9939-1961-0125898-1
- [9] G. Hochschild and G. D. Mostow, Representations and representative functions of Lie groups, Ann. of Math. (2) 66 (1957), 495–542. MR 98796, https://doi.org/10.2307/1969906
- [10] Nagayoshi Iwahori and Nobuko Iwahori, An extension of Tannaka duality theorem for homogeneous spaces, Sci. Papers College Gen. Ed. Univ. Tokyo 8 (1958), 115–121. MR 105459
- [11] G. I. Kac, A generalization of the principle of duality for groups, Dokl. Akad. Nauk SSSR 138 (1961), 275–278 (Russian). MR 0139692
- [12] E. R. van Kampen, Almost periodic functions and compact groups, Ann. of Math. (2) 37 (1936), no. 1, 78–91. MR 1503270, https://doi.org/10.2307/1968688
- [13] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. MR 0054173
- [14] J. v. Neumann, Almost periodic functions in a group. I, Trans. Amer. Math. Soc. 36 (1934), no. 3, 445–492. MR 1501752, https://doi.org/10.1090/S0002-9947-1934-1501752-3
- [15] L. Pontrjagin, Topological groups, Princeton Univ. Press, Princeton, New Jersey, 1939.
- [16] W. Forrest Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15–56. MR 102761, https://doi.org/10.1090/S0002-9947-1959-0102761-9
- [17] Shuichi Takahashi, A duality theorem for representable locally compact groups with compact commutator subgroup, Tohoku Math. J. (2) 4 (1952), 115–121. MR 53947, https://doi.org/10.2748/tmj/1178245413
- [18] T. Tannaka, Über den dualitotssatz der nicht kommutativen topologischen gruppen, Tôhoku Math. J. 45 (1938), 1-12.
- [19] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités Sci. Ind. No. 869, Hermann, Paris, 1960.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 22.10
Retrieve articles in all journals with MSC: 22.10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1966-0195988-5
Article copyright:
© Copyright 1966
American Mathematical Society