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Let A be a uniform algebra on a compact Hausdorff space X, i.e., Ais a uniformly

closed separating subalgebra of C(X) which contains the constant functions.

Let dm be a representing measure on X for a complex-valued homomorphism cp

of A. A0 will denote the kernel of cp, and H "and //J will denote respectively the

closures of A and A0 in L"(dm), 0 < p < co.

Afunction/eH1 is extremal if/# 0 and//|/| t is an extreme point of the unit

ball of H1. DeLeeuw and Rudin [1] proved that ifA = {|z|:Sl} and A is the

algebra of continuous functions on A which are analytic on the interior of A,

andif/efí^tío^Tt), then Af is dense in Hi(d9¡2n) if and only iff is extremal.

It is the purpose of this note to prove the following generalization. Here, and

throughout the paper, we assume that dm is a Szegö measure for cp (defined later).

Theorem.   Suppose feH1. Then A0fis dense in f/¿ if and only iff is extremal.

The proof of the theorem is based on the idea from [2] of projecting L1

into Hp, where 0 < p < 1, together with a technique of Hoffman and Wermer [9]

which allows one in certain situations to modify Hp-convergence to obtain point-

wise bounded convergence. Professor Forelli tells us he has used the projection of

L1 into Hp, together with some special function theory, to obtain the theorem for

the H1 spaces associated with algebras of almost periodic functions.

The Hoffman-Wermer technique is used in subsequent sections to study Hp

spaces for 0 < p < co. Here proofs are given of some standard results, all known

for p ^ 1, which also cover the case 0 < p < 1. An invariant subspace theorem is

proved in the final section which shows that once the invariant subspaces of L2

are understood, the invariant subspaces of the other L? spaces, 0 < p < oo, offer

no difficulty.

The author would like to acknowledge several helpful conversations with

Keith Yale. We are also grateful to Professor Kenneth Hoffman for supplying us

with Lemma 3, which allowed us to delete a superfluous hypothesis from the

theorem.

Remarks. According to a theorem of Wermer [12], [6], the Gleason part of cp

on HK is either an analytic disc or just the one point cp, depending on whether or

not there is an inner function F such that FH1 = Hy\. If such an inner function
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exists, it is easy to see that the only extremal functions in Hl are the outer functions.

In the other case, it is not known whether there exist functions/e //¿ such that/4

is dense in Z/¿. In [5, p. 183], this problem is raised in an equivalent form, in

connection with evanescent stochastic processes.

A function / such that A0f is dense in H¡ has the following property: if

geH¿ and |g|^|/|, then g//e//°°. In particular, if |g| = |/|, then g = Ff

expresses g as the product of an inner function and an extremal function, and the

factorization is unique, up to a constant multiple of modulus one. Consequently,

the existence of extremal functions in //¿ would lead to a wider factorization

theory than now available.

Proof of the theorem. A Szegö measure is a representing measure dm for ep

suchthat Szegö's theorem is valid: for any function h e Ll such that h = 0,

inf   I 11 — f\2h dm = exp       loghdm).

Equivalently, dm is a Szegö measure if whenever dv is another representing

measure for eb which is absolutely continuous with respect to dm, then dv = dm.

Also, dm is a Szegö measure if and only if the algebra H °°(dm) of bounded func-

tions inHlidm)isalogmodular algebra on its Silov boundary Y [6].

We will be more interested in the logmodular algebra //°° on Y rather than

in A. The results of [6] carry over to Hœ. In particular, dm is the unique rep-

resenting measure on Y for the extension of ep to ZZ00 (also denoted by eb). Since ep

then has a unique norm-preserving extension from //°° to CCY), the following

approximation lemma is valid [10].

Lemma  1. If u is any real-valued continuous function on Y, then

u dm = inf {      v dm:  v eRe(Z/œ), » £; u 1.

The proof of the theorem begins with the main lemma used by deLeeuw and

Rudin.

Lemma 2. A nonzero function feH1 is not extremal if and only if there

exists a bounded real-valued function k such that jk dm = 0, kfeH1, and

fc/#0.

Corollary. If the Gleason part ofep on //œ is an analytic disc, then the extremal

functions in H1 are the outer functions.

In this case / is not outer if and only if we can write / = Fg, where geH1 and

F is a nonconstant inner function. If J / dm ^ 0, this follows from [6], and if

jf dm = 0, from the remarks preceding the proof. If k = F + F, then the

function fc — J"fc dm satisfies the requirements of Lemma 2.
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If / is outer, then 1 is in the L1-closure of Af, so any k satisfying the require-

ments of Lemma 2 would belong to Hl. But Hx contains no nonconstant real-

valued functions [6]. This proves the corollary.

Lemma 3 (Hoffman). IfE is a measurable subset of Y such that 0 < m(E) < 1,

there is a function g e f/00 such that g is real on E and g is not a constant a.e. on E.

To prove this, let Zi be an outer function in H00 such that | Zi | = 1 on £ and

Zi| = e on Y — E. h is in vertible in H °°, and g — h + 1/Z, is real on £. Also,

cp(h)\ > 1, since

log|<KZi)|= ilog|Zi|iZm>0.

Suppose that g is a constant on £. Then Zi assumes at most two values on £,

so h is a constant on a subset D of £ of positive measure. If Zi = X on D, h — X

vanishes on a set of positive measure, so cp(h — X) = 0 by Jensen's inequality.

Consequently, |<KZi)| = |^| = 1> a contradiction.

Corollary. If f eHl vanishes on a set of positive measure, then f is not

extremal.

If / ^ 0 vanishes on a set of positive measure, let £ be the set where / does not

vanish, and let g be the function of Lemma 3. If k is defined to be equal to 0

where/ vanishes and equal to g where / does not, then k— jk dm satisfies the

requirements of Lemma 2.

Lemma  4. fA0 + fA0 + C is dense in L1 if and only if f is extremal.

Here C is the field of complex constants, and the bar denotes complex conjug-

ation. Lemma 4 is a simple consequence of Lemma 2 and the corollary to

Lemma 3. The function Zc appears as a linear functional on L1 which is orthogonal

to fA0 + fA0 + C. Since H + H1 is dense in L1, we have proved the following

half of the theorem.

Corollary.  If fA0 is dense in H¿, then f is extremal.

The next lemma first appears in a function algebra setting in [4]. The proo

there is valid for dirichlet algebras, and a minor adjustment using Lemma 1

covers the case at hand.

Lemma   5. 7/0 < p < 1, there is a constant K(p) such that

(D \\f\\PèK(p)\\f + g\\y

for all f eHœ and geH^ . There is a constant J(p), 0 < p < 1, such that

(2) ||t>||,áJ(p)||u|i

for all real-valued functions u and v such that u + iveHœ and ¡vdm = 0.
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It is easy to show that inequalities of the forms (1) and (2) are equivalent (cf. [7],

[13]). To prove (2), one first assumes that ueRe(//°°)is positive, and proceeds

as in [4], or as in [13, p. 254]. If we Ret//00) is arbitrary, Lemma 1 produces a

«eRe(/i°°) such that u^max(0,w) and ¡t»||i^ |w|i» Then w is expressed

as the difference of the positive functions u and u — w, and the inequality is ex-

tended to w.

Now suppose feH1, and let h = max(\f\,l). h and log h are integrable,

so there is an outer function GeH1 such that f G | = h [6]. In particular, \f/G | z% 1.

If g„ is a sequence in A such that g„G -> 1 in if1, then

j \fg.-f¡G\dmS j\g„G-l\dm->0,

so f/G e H°°.

Lemma 6. / is extremal if and only if fjG is extremal. fA0 is dense in

Hi if and only if(f¡G)A0 is dense in //¿.

The proof of this lemma is straightforward, and will be omitted.

We now complete the proof of the theorem. Let / be an extremal function in H1.

Replacing / by f¡G as in Lemma 6, we can assume that / is bounded. Let g e A0.

By Lemma 4, there are sequences p„, q„ e A0 and complex numbers A„ such that

p„f + q„f + An-* g in Ü. Integrating both sides of this limit relation, we see

that A„ -> 0. So we can assume that A„ = 0.

By Lemma 5, q„f ~* gin H", 0 < p < 1. Passing to a subsequence, if necessary,

we can also assume that q„f -* g a.e. The remainder of the proof involves repro-

ducing a technique due to Hoffman and Wermer [9] for modifying the sequence

to obtain pointwise convergence.

We can assume that \\f\\x < 1 and || g ||œ < 1. Let w„ = log+ | q„f |, then wn = 0

and w„ -> 0 a.e.   Let E„ = {x: | q„(x)f(x) | > 1}.   Since   plog+ sz^sp for   s 2: 0,

p     vv„ dm = p      w„ dm =       I q„f\p dm
J Jb.. Je.

=   f   \qJ-g\Pdm+ í   \g\"dm
Je„ Je..

^  \\qnf-g\\¡+m(En).

Since  |g|0O<l and <?„/-> g in Lp, m(F„)->0. Consequently,   jw„ dm -> 0.

By Lemma 1, we can find u„eRe(Hco) such that w„ — w„ and ¡un dm -* 0.

Choose v„ real such that un + iv„ e //°° and J"u„ dm = 0. If g„ = exp( — u„ — ivn),

then g„ e ff œ and [| gnq„f | «, á L

Now I gn \x ^ 1 and J"g„ dm = exp { J u„ dm} -» 1. Passing to a subsequence,

we can assume that g„-*l a.e. Hence gnq„f-+g a.e. In particular, gnq„f^>g in
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Hl(dm), so every fonction geA0 is in the L1-closure of A0f. This proves that

A0f is dense in ií¿.

Corollary. If fe H2, then A0f is dense in H¿ if and only ifA0f is dense in H0.

Density in TY2. trivially implies density in JY¿. So suppose A0f is dense in 77¿.

The technique used in Lemma 6 allows us to assume that / is bounded. The

Hoffman-Wermer argument then shows that every g e A0 is a bounded pointwise

limit of functions in H™f. In particular, A0f is dense in H2,.

The same proof could be used to study extremal functions in //¿, i.e., functions

feHo such that //||/|i is an extreme point of ball H-. The analogous result

is the following.

Theorem. Let /ei7¿. fA is dense in ff¿ if and only if f is extremal in H¿.

The altered form of Lemma 4 needed to prove this theorem is that fA+fA + C

is dense in L1 if and only if / is extremal in H¿.

Corollary. Suppose that the Gleason part of cp on H™ is the one point {cp}.

Then the extreme points of ball H1 are the outer functions in H1 of norm 1,

together with the extreme points of ball H¿.

The problem here is to show that every extreme point / of ball Hq is extremal

in H1. Now Af is dense in i/¿. If / were not extremal in H1, then A0f would

not be dense in Hi. Consequently, H¿ would be a simply invariant subspace

of H1 (cf. [11], or Theorem 7), and H¿ = FH1 fot some inner function F. As

remarked earlier, this would imply that cp is the center of an analytic disc.

H" spaces. For p = 1 and 2, the results of this section are found in [6] for

logmodular algebras. The reduction of the general case of a Szegö measure to the

logmodular case is in [8]. Here it is shown that Hœ is logmodular, and that A

is weak* dense in if00, so that the H" spaces associated with HOT are the same

as those associated with A.

Not all results about logmodular algebras transfer to A. In fact, the Hoffman-

Wermer argument establishes the following theorem, which is not valid for

arbitrary Szegö measures.

Theorem 1. Suppose that dm is a unique representing measure on X for cp,

considered as a homomorphism of A. If 0 < p < oo, and f is a bounded function

in H", then there is a sequence f„eA such that |/„ IL ^ |/|«i  and fn~*f a-e-

Applied to the Hp space of an arbitrary Szegö measure, this yields the following

corollary.

Corollary. If 0 < p < co, and f is a bounded function in Hp, then f eHœ.

We will need first some facts about Hp spaces for p ^ 1. Recall that a function

geH1 is outer if
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log |     g dm\   =     log|g| dm > - co,

and g 6 H1 is inner if | g | = 1 a.e.

Lemma 7. Suppose p — 1. A non-negative function h is the modulus of an

outer function f in Hp if and only ifhelF and log/ieL1.

For p = 1 or 2, this is proved in [6]. The general case 1 < p < oo is a consequence

of the direct sum decomposition IF = Hp © Hp. The boundedness of the projection

of If onto Hp is due, in the classical case, to M. Riesz (cf. [7], [13]). His proof

carries over, with some minor adjustments as in Lemma 4, to the general case.

An immediate corollary of this direct sum decomposition is that Hp is the ortho-

gonal complement in Lp of A0. Consequently, Hp = Hl C\LP, and the Hp theorem

now follows from the H1 theorem.

Lemma 8. Suppose l:Sp< oo. feHp is an outer function if and only if

Af is dense in Hp.

Again the theorem is known for f/1 [6], so we assume 1 < p < oo. If Af is

dense in H", then Af is dense in H1, so / is outer.

Suppose that / is outer. Then Af is dense in Hl. Let q be the conjugate index

to p, and let gel? be orthogonal to Af and also to Hp. Then the L1 function gf

is orthogonal both to A and to A0. Since A + Â0 is weak* dense in L°° [6],

gf = 0.f cannot vanish on a set of positive measure, so g = 0, and Af must be

dense in Hp.

Theorem 2. Suppose that f eHpand log\f\ is integrable. For some integer

n such that np 2: 1, there is an outer function geH"p such that f = Fg", where

F is an inner function.

To prove this, choose the integer fc such that n = 2k — 1/p. By Lemma 7,

\f\iln is the modulus of an outer function in H"p. Choose a sequence g7e A such

that gj -► g in L"". Then

j \g2j-g2\pl2dm=   {Jl^-g^oTn}1'    {J|g„ + g|'"'í.m}1/2,

and the right-hand side tends to zero. Then g2-> g2 in Lnpl2. By induction, gj-*g"

in Lp, so that g" e Hp.

By Lemma 8, there is a sequence h} e A such that hjg -* 1 in Lnp. By the same

estimate as above, we see that / | hjg2 — 1 |"p/2 dm -» 0. Proceeding by induction,

we see that /."g"-> 1 in Lp. Consequently,

j \flg" - fh]\ dm = j\l- gnhj\ dm -> 0,

and f¡g" = F belongs to Hp. Also, |f| = 1 a.e., so F is an inner function in fl°°.
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Theorem 3. TZie functional cp(f) = J / dm has a continuous extension to

Hp, 0 < p < 1, which will also be denoted by cp. Jensen's inequality is valid for

functions f eHp :

log | «/»(/) | g J logj/| Jm.

Suppose feA and jfdm^O. Then j log|/| dm # 0, and by Theorem 2

we can write / = Fg", where np — 1, F is inner, and g is outer. Then

\<Kf)\ = \<KF)cP(g)n\ú\<Kg)\n

=   I  f g dm |    S { [ U|"pdmJ  '

=  {/|/|P^}1/P=I|/|Ip-

This estimate shows that cp extends continuously to Hp. Now Jensen's inequality

holds for functions in A, and the same proof which extends it to functions in H1

also extends it to functions in Hp, 0 < p < 1 (cf. [6]).

Theorem 4. Let f eHp. Then Af is dense in Hp if and only if log\cp(f)\

= }log\f\ dm > - co.

If Af is dense in Hp, then cp(f) # 0, so J" log|/| dm > -co. By Theorem 2,

/ = Fg", where F is inner and g e H "p is outer. Since 1 is in the closure of Af, F

is in the closure of Ag, and Fe H00. Consequently, F is a constant of modulus 1.

Now the equality in Theorem 4 for / follows from the corresponding equality for

g, and the fact that | cj>(f) | = | cp(g)\\

Conversely, if log | cp(f) | = J" log|/| dm > — oo, and / = Fg" as above, then

the inner factor F must be a constant, so we can assume / = g". As in the proof

of Theorem 2, we can approximate the function 1 in Hp by functions in Ag".

Thus, Ag" is dense in Hp.

Another consequence of Lemma 7 and Theorem 2 is the following.

Theorem 5. If fe H" and \f\ e Lq, where 0<p<q = «>, then f e Hq.

Adjusting / by a constant, if necessary, we can assume that cp(f) # 0. Then

J" log |/| dm > — oo, and we can write / = Fg"as in Theorem 2. But now g e Hnp

and | g | eLnq, so by Lemma 7, g e Hnq. It follows that g" e Hq, and so / e H".

A function feHp, 0<p<l, is said to be outer if

log | cp(f) | =  J log |/| dm > - oo.

The characterization of the moduli of outer functions can now be carried over

from [6]. The proof is straightforward.

Theorem 6. If h^ 0, and 0 < p < co, the following assertions are equivalent:
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(i)    heLpand logheL1.

(ii)   h =

(iii) h =
g | for some outer function geHp.

f\for some function feH" such that ep(f) ^ 0.

Invariant subspaces. A (closed) subspace Ji of If is invariant if AJi ezz Ji.

Ji is simply invariant if Ji is invariant and A0Ji is not dense in Ji. In order to

carry over the invariant subspace theorems in the form given them by Srinivasan

[11], we first state a strengthened form of Theorem 1, established by the same

argument.

Theorem 7. Suppose that /„el00, feLx, and /„->/ in the Lp metric for

some p, 0 < p < oo. Then there is a subsequence {f„k} of {/„} and functions

gkeHw such that | g*/,, | œ g |/|œ and gkf„k-+f a.e. If dm is a unique rep-

resenting measure on X for ep, and if the f„ are continuous, we can choose the

gk to belong to A.

Lemma 9. // 0 < p ^ oo, and Ji is a (weak*) closed subspace of Lp such

that AJÍ ezz J(, then HxJi ezzjf.

If dm were a unique representing measure, Lemma 8 would be a consequence

of Theorem 7. In case dm is only a Szegö measure for ep we use the fact [8] that

A is weak* dense in Hœ. Hence Lemma 8 is true if p = go.

Suppose 1 ^ p < a. Given feH °°and ge Ji, choose /„eA such that /„-*■ f

weak*. If he(Lp)* and h ±Ji, then 0=ffngh dm-*$fgh dm, so h L fg.
Hence fg e < Ji "L)J- = Ji, and HxJi £ Ji.

Now suppose 0 < p < 1. By induction we can assume the theorem is true for

L2p. Let /e//00 and geJi. Write g = g0gi, where g0 and gy belong to I2p. Then

/go is in the I2p-closure of Ag0, so there is a sequence f„eA such that fg-*fg

in I2p. From

J|/^-/,(|P»im^{J|/„g0-/g0|2pdm}1/2{J|g1|2pdm)1/2,

we see that fg^-fg in L". Again fgeJi, and H^JiezzJi.

Lemma 10. IfO<p < oo, and Ji is an invariant subspace of If, then Ji HL00

is dense in Ji.

Let feJi, and let G„ be the outer function in Hp whose modulus is |G„|

= max(l,|/|/n). Then |//G| =min(n,|/|), and f¡G is bounded. If hkeA is a

sequence such that lim,,^^ hkGn = 1 in Lp then

| \f/Gn ~fhk\p dm z% np j 11 - ^G„|p dm-*0,

as fc-> oo. So //G„eJiC\Lx.
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Now {| Gn\}^Ly is a monotone decreasing sequence of real functions in Lp, and

I Gn\ -* 1 a.e. Consequently J log| G„| dm-*0, and | cp(Gn) \-*l- Adjusting by a

complex constant of modulus 1, we can assume cp(Gn) = 1, so that cp(Gn) -» 1.

Let G„ = gk„, when k is a fixed integer as in Theorem 1 with Zcp > 1, gn is outer

in Hkp, and </>(g„) -* 1« Passing to a subsequence, we can assume that g„ -» g weakly

in L*p. Since |g„|-+l by decreasing, ||g„ ¡i^-»-1, and |g||;Sl. However,

I g I = | J g íZm I = lim,,^ } g„ dm = 1, and we see that || g | tp = 1 = lim | g„ \\kp.
It follows that g„->g strongly in L*''. Assuming that g„-+g a.e., we see that

|g| = 1 a.e. Since J"g dm = 1, g is identically 1. Then G„-> 1 a.e. also.

Now |/-//G„|P is integrable, |/ - //G„|p -» 0 a.e., and

|/-//G„|p^|/|p + |//Gn|pg2|/|p,       0<p=l,

with a similar inequality holding if p > 1.

It follows from the dominated convergence theorem that //G„ -> / in LP .

Theorem 8. If 0 < p < q < oo, there is a one-to-one correspondence between

invariant subspaces Jtp of L" and Jtq of Lq, such that Jtq = LqCt Jtp, and

Jt'p is the closure in Lp of Jtq. There is a one-to-one correspondence between

invariant subspaces J(p of Lp and weak* closed invariant subspaces Jtœ of L°°,

such that Jt'w = L00 n Jt  and Jt'  is the closure of Jt'w in Lp.

To prove this, it clearly suffices to prove the part dealing with the corre-

spondence between Jtp and Jt'œ.

Let Ji be an invariant subspace of Lp, and let Jtm = Jt C\ Vo. By Lemma 10,

the closure of Jtx in if is Jt. Also, Jtn is weak* closed. In fact, a consequence

of the Krein-Schmullian theorem [14] is that the space of bounded functions in any

closed subspace of Lp(dm), dm a finite measure, is weak* closed in L00 (dm).

To complete the argument, we must show that if Jtx is a weak* closed invariant

subspace of L00, and Jtp is the closure of Jtx in LP, then Jtpr\La'=Jtœ. By The-

orem 7, one can modify any sequence /„ eJtœ converging in if to a function / 6 L00,

to obtain a sequence g„ e Jtœ converging pointwise boundedly to /. Then g„

converges weak* to /, so fe Jtœ, and Jt p n Va c Jtw. The reverse inclusion is

immediate.

Theorem 9. Let 0 < p < oo, and let Jt be a simply invariant subspace of Lp.

There exists a function FeJt such that | F | = 1 a.e. and Jt = FHP.

The generalized form of Beurling's theorem is due in this form to Srinivasan.

The general case 0 < p < oo is now a consequence of Theorem 7 and the case

p = 2, since the invariant subspaces Jtp of Theorem 7 are simultaneously simply

invariant or not simply invariant.

The proof for p = 2 is so beautiful that we cannot resist setting it down again.

In this case, let F be a function of norm 1 in Jt which is orthogonal to A0Jt.

In particular, F 1 A0F, so J"g|F|2 dm = 0, all geA0. Since J |F|2 dm = l,
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FJ2 dm is a representing measure for ep. Consequently, |l|2 dm = dm and

FI = I a.e. If g e ̂  and g 1 F//2, then ¡fFgdm = 0, all feA. Since F 1 A0g,

j fFg dm = 0, all / e A0.  So F g 1 A + Ä. Since A + À is weak* dense in L00

F g = 0, and g = 0. Thus .// = F//2.

Remark added in proof.  Let dm  be a representing measure for a homo-

morphism </> of a uniform algebra /I such that

log\ePif)\z% j log] f\ dm,       feA.

Then ep extends continuously to all H" idm), p > 0. Otherwise there would be

a sequence f„e A such that ||/„||p->0 while |</>(/„)|-+ °°- But this is impossible

in view of the inequality log | (/>(/)] = (J* |/|p dm)/p, feA, derived from

log s= splp, p> 0, s > 0.
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