Functions resembling quotients of measures
HTML articles powered by AMS MathViewer
- by Ethan D. Bolker
- Trans. Amer. Math. Soc. 124 (1966), 292-312
- DOI: https://doi.org/10.1090/S0002-9947-1966-0197671-9
- PDF | Request permission
References
- L. E. Dubins and E. H. Spanier, How to cut a cake fairly, Amer. Math. Monthly 68 (1961), 1–17. MR 129031, DOI 10.2307/2311357
- Paul R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416–421. MR 24963, DOI 10.1090/S0002-9904-1948-09020-6
- A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465–478 (Russian, with French summary). MR 0004080
- Dorothy Maharam, The representation of abstract measure functions, Trans. Amer. Math. Soc. 65 (1949), 279–330. MR 28923, DOI 10.1090/S0002-9947-1949-0028923-0
- John von Neumann, Continuous geometry, Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. Foreword by Israel Halperin. MR 0120174
- P. D. Finch, A generalisation of the Radon-Nikodým theorem, J. Austral. Math. Soc. 5 (1965), 17–24. MR 0179316
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 124 (1966), 292-312
- MSC: Primary 28.50
- DOI: https://doi.org/10.1090/S0002-9947-1966-0197671-9
- MathSciNet review: 0197671