Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II. Existence theorems for weak solutions
HTML articles powered by AMS MathViewer
- by Lamberto Cesari
- Trans. Amer. Math. Soc. 124 (1966), 413-430
- DOI: https://doi.org/10.1090/S0002-9947-1966-0203543-3
- PDF | Request permission
References
- Lamberto Cesari, Un teorema di esistenza in problemi di controlli ottimi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 19 (1965), 35–78 (Italian). MR 192936
- A. F. Filippov, On certain questions in the theory of optimal control, J. SIAM Control Ser. A 1 (1962), 76–84. MR 0149985
- R. V. Gamkrelidze, On sliding optimal states, Dokl. Akad. Nauk SSSR 143 (1962), 1243–1245 (Russian). MR 0137904
- E. B. Lee and L. Markus, Optimal control for nonlinear processes, Arch. Rational Mech. Anal. 8 (1961), 36–58. MR 128571, DOI 10.1007/BF00277429
- E. J. McShane, Existence theorems for Bolza problems in the calculus of variations, Duke Math. J. 7 (1940), 28–61. MR 3479 M. Nagumo, Über die gleichmässige Summierbarkeit und ihre Anwendung auf ein Variationtions-problem, Japan. J. Math. 6 (1929), 173-182. L. S. Pontryagin, Optimal control processes, Uspehi Mat. Nauk 14 (1959), 3-20; Amer. Math. Soc. Transl. (2) 18 (1961), 321-339. L. S. Pontryagin, V.C. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, Gosudarst, Moscow, 1961; English transl., Interscience, New York, 1962; Pergamon, New York, 1964.
- Emilio Roxin, The existence of optimal controls, Michigan Math. J. 9 (1962), 109–119. MR 136844
- Leonida Tonelli, Su gli integrali del calcolo delle variazioni in forma ordinaria, Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 3 (1934), no. 3-4, 401–450 (Italian). MR 1556738 L. Turner, The direct method in the calculus of variations, Ph. D. Thesis, Purdue Univ., Lafayette, Indiana, 1957.
- J. Warga, Relaxed variational problems, J. Math. Anal. Appl. 4 (1962), 111–128. MR 142020, DOI 10.1016/0022-247X(62)90033-1
- T. Ważewski, Sur une généralisation de la notion des solutions d’une équation au contingent, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 11–15 (French). MR 153944 L. C. Young, Generalized curves and the calculus of variations, C. R. Soc. Sci. Varsovie (3) 30 (1937), 211-234.
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 124 (1966), 413-430
- MSC: Primary 49.00
- DOI: https://doi.org/10.1090/S0002-9947-1966-0203543-3
- MathSciNet review: 0203543