Piercing points of homeomorphisms of differentiable manifolds
HTML articles powered by AMS MathViewer
- by Jerome L. Paul
- Trans. Amer. Math. Soc. 124 (1966), 518-532
- DOI: https://doi.org/10.1090/S0002-9947-1966-0212824-9
- PDF | Request permission
References
- Morton Brown and Herman Gluck, Stable structures on manifolds. I. Homeomorphisms of $S^{n}$, Ann. of Math. (2) 79 (1964), 1–17. MR 158383, DOI 10.2307/1970481 J. Paul, Piercing points of homeomorphisms, Abstract 65T-404, Notices Amer. Math. Soc. 12 (1965), 710-711.
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331–341. MR 133812, DOI 10.2307/1970177
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- William Huebsch and Marston Morse, Schoenflies extensions without interior differential singularities, Ann. of Math. (2) 76 (1962), 18–54. MR 146847, DOI 10.2307/1970263
- A. Schoenflies, Beiträge zur Theorie der Punktmengen. III, Math. Ann. 62 (1906), no. 2, 286–328 (German). MR 1511377, DOI 10.1007/BF01449982
- William Huebsch and Marston Morse, An explicity solution of the Schoenflies extension problem, J. Math. Soc. Japan 12 (1960), 271–289. MR 206928, DOI 10.2969/jmsj/01230271
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X W. Huebsch and J. Paul, Representing certain open sets by diffeomorphisms, (to appear). P. Roy, Locally flat $k$-cells and spheres in ${E^n}$ are stably flat if $k \leqq 2n/3 - 1$, Abstract 621-66, Notices Amer. Math. Soc. 12 (1965), 323.
- M. K. Fort Jr., A wild sphere which can be pierced at each point by a straight line segment, Proc. Amer. Math. Soc. 14 (1963), 994–995. MR 159311, DOI 10.1090/S0002-9939-1963-0159311-7
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 124 (1966), 518-532
- MSC: Primary 57.20
- DOI: https://doi.org/10.1090/S0002-9947-1966-0212824-9
- MathSciNet review: 0212824