The uniqueness of solutions of the heat equation in an infinite strip
HTML articles powered by AMS MathViewer
- by Victor L. Shapiro
- Trans. Amer. Math. Soc. 125 (1966), 326-361
- DOI: https://doi.org/10.1090/S0002-9947-1966-0201847-1
- PDF | Request permission
References
- Felix Hausdorff, Set theory, Chelsea Publishing Co., New York, 1957. Translated by John R. Aumann, et al. MR 0086020 S. Saks, Theory of the integral, Monografie Matematyczne, Vol. 7, Warsaw, 1937.
- Victor L. Shapiro, The uniqueness of functions harmonic in the interior of the unit disk, Proc. London Math. Soc. (3) 13 (1963), 639–652. MR 155983, DOI 10.1112/plms/s3-13.1.639 S. Täcklind, Sur les classes quasianalytiques des solutions des équations aux derivées partielles du type parabolique, Nova Acta Soc. Sci. Uppsalla (4) 10 (1936), 1-57. A. Tychonoff, Théorèmes d’unicité pour l’équation de la chaleur, Mat. Sb. 42 (1935), 199-216.
- D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85–95. MR 9795, DOI 10.1090/S0002-9947-1944-0009795-2
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776 —, Trigonometric series, Vol. II, Cambridge Univ. Press, Cambridge, 1959.
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 125 (1966), 326-361
- MSC: Primary 35.78
- DOI: https://doi.org/10.1090/S0002-9947-1966-0201847-1
- MathSciNet review: 0201847