On maximal congruences and finite semisimple semigroups
HTML articles powered by AMS MathViewer
- by Robert H. Oehmke
- Trans. Amer. Math. Soc. 125 (1966), 223-237
- DOI: https://doi.org/10.1090/S0002-9947-1966-0202880-6
- PDF | Request permission
References
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948
- R. A. Dean and Robert H. Oehmke, Idempotent semigroups with distributive right congruence lattices, Pacific J. Math. 14 (1964), 1187–1209. MR 172939
- Paul Dubreil, Contribution à la théorie des demi-groupes. II, Univ. Roma Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5) 10 (1951), 183–200 (French). MR 48426
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Hans-Jürgen Hoehnke, Structure of semigroups, Canadian J. Math. 18 (1966), 449–491. MR 197597, DOI 10.4153/CJM-1966-048-1
- Robert H. Oehmke, On the structures of an automaton and its input semi-group, J. Assoc. Comput. Mach. 10 (1963), 521–525. MR 167373, DOI 10.1145/321186.321194
- D. Rees, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387–400. MR 2893
- E. J. Tully Jr., Representation of a semigroup by transformations acting transitively on a set, Amer. J. Math. 83 (1961), 533–541. MR 136670, DOI 10.2307/2372893
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 125 (1966), 223-237
- MSC: Primary 20.92
- DOI: https://doi.org/10.1090/S0002-9947-1966-0202880-6
- MathSciNet review: 0202880