Noncommutative Markov processes
HTML articles powered by AMS MathViewer
- by John de Pillis
- Trans. Amer. Math. Soc. 125 (1966), 264-279
- DOI: https://doi.org/10.1090/S0002-9947-1966-0206730-3
- PDF | Request permission
References
- Chandler Davis, A device for studying Hausdorff moments, Trans. Amer. Math. Soc. 87 (1958), 144–158. MR 92879, DOI 10.1090/S0002-9947-1958-0092879-0 J. de Pillis, Linear operators which preserve hermitian and positive semidefinite transformations, (to appear).
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- H. A. Dye, The Radon-Nikodým theorem for finite rings of operators, Trans. Amer. Math. Soc. 72 (1952), 243–280. MR 45954, DOI 10.1090/S0002-9947-1952-0045954-5
- Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea, On the lifting property. I, J. Math. Anal. Appl. 3 (1961), 537–546. MR 150256, DOI 10.1016/0022-247X(61)90075-0
- M. A. Naĭmark, Normed rings, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR 0355601
- R. R. Phelps, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc. 108 (1963), 265–274. MR 156224, DOI 10.1090/S0002-9947-1963-0156224-6
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 125 (1966), 264-279
- MSC: Primary 46.65; Secondary 60.60
- DOI: https://doi.org/10.1090/S0002-9947-1966-0206730-3
- MathSciNet review: 0206730