On the range of an invariant mean
Author:
E. E. Granirer
Journal:
Trans. Amer. Math. Soc. 125 (1966), 384-394
MSC:
Primary 20.92
DOI:
https://doi.org/10.1090/S0002-9947-1966-0204551-9
MathSciNet review:
0204551
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] E. S. Ljapin, Semigroups, Translations of Mathematical Monographs, Vol. 3, American Mathematical Society, Providence, R.I., 1963. MR 0167545
- [2] Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 0092128
- [3] Edmond Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367–379. MR 166597, https://doi.org/10.1090/S0002-9947-1964-0166597-7
- [4] E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177–197. MR 197595, https://doi.org/10.7146/math.scand.a-10772
- [5] Theodore Mitchell, Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc. 122 (1966), 195–202. MR 190249, https://doi.org/10.1090/S0002-9947-1966-0190249-2
- [6] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. MR 27868, https://doi.org/10.1007/BF02393648
Retrieve articles in Transactions of the American Mathematical Society with MSC: 20.92
Retrieve articles in all journals with MSC: 20.92
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1966-0204551-9
Article copyright:
© Copyright 1966
American Mathematical Society