Measurable gambling houses
HTML articles powered by AMS MathViewer
- by Ralph E. Strauch
- Trans. Amer. Math. Soc. 126 (1967), 64-72
- DOI: https://doi.org/10.1090/S0002-9947-1967-0205352-9
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 130 (1968), 184.
References
- David Blackwell, Discounted dynamic programming, Ann. Math. Statist. 36 (1965), 226–235. MR 173536, DOI 10.1214/aoms/1177700285
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- Lester Dubins and David Freedman, Measurable sets of measures, Pacific J. Math. 14 (1964), 1211–1222. MR 174687
- Lester E. Dubins and Leonard J. Savage, How to gamble if you must. Inequalities for stochastic processes, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965. MR 0236983 Casimir Kuratowski, Topologie I, Warsaw, Poland, 1933.
- Michel Loève, Probability theory, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-New York-London, 1960. 2nd ed. MR 0123342
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- Ralph E. Strauch, Negative dynamic programming, Ann. Math. Statist. 37 (1966), 871–890. MR 194243, DOI 10.1214/aoms/1177699369
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 126 (1967), 64-72
- MSC: Primary 60.40
- DOI: https://doi.org/10.1090/S0002-9947-1967-0205352-9
- MathSciNet review: 0205352