Comparison theorems for elliptic equations on unbounded domains
HTML articles powered by AMS MathViewer
- by C. A. Swanson
- Trans. Amer. Math. Soc. 126 (1967), 278-285
- DOI: https://doi.org/10.1090/S0002-9947-1967-0203211-9
- PDF | Request permission
References
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 92067
- Colin Clark and C. A. Swanson, Comparison theorems for elliptic differential equations, Proc. Amer. Math. Soc. 16 (1965), 886–890. MR 180753, DOI 10.1090/S0002-9939-1965-0180753-X F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea, New York, 1959.
- Philip Hartman and Aurel Wintner, On a comparison theorem for selfadjoint partial differential equations of elliptic type, Proc. Amer. Math. Soc. 6 (1955), 862–865. MR 74668, DOI 10.1090/S0002-9939-1955-0074668-9
- Walter Leighton, Comparison theorems for linear differential equations of second order, Proc. Amer. Math. Soc. 13 (1962), 603–610. MR 140759, DOI 10.1090/S0002-9939-1962-0140759-0
- M. H. Protter, A comparison theorem for elliptic equations, Proc. Amer. Math. Soc. 10 (1959), 296–299. MR 107076, DOI 10.1090/S0002-9939-1959-0107076-6
- C. A. Swanson, A comparison theorem for elliptic differential equations, Proc. Amer. Math. Soc. 17 (1966), 611–616. MR 201781, DOI 10.1090/S0002-9939-1966-0201781-2
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 126 (1967), 278-285
- MSC: Primary 35.11; Secondary 35.42
- DOI: https://doi.org/10.1090/S0002-9947-1967-0203211-9
- MathSciNet review: 0203211