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1. Introduction. Let £ be a topological space and let GF denote the group of

homeomorphisms of £ onto itself. We give GF the point-open topology (the

topology of pointwise convergence on £) and consider it as a topological space.

In general, with this topology, GF is not a topological group; for example, if £ is

the unit square, inversion is not continuous.

We are concerned with finding conditions such that if £' and £ satisfy these

conditions then an isomorphism of GF- onto GF which is also a homeomorphism

induces a homeomorphism of £' onto £. Some conditions are needed since there

is such an isomorphism between the group of the open unit interval and that of the

closed unit interval.

In [2], Wechsler showed that a sufficient condition for Hausdorff, nondiscrete

spaces is co-homogeneity, i.e., for each «, and each pair of «-tuples of distinct points

(xy,...,xn), {yx,...,yn) there is a homeomorphism « such that h(xy)=yy for

i = l,..., n.

Our main result is to replace to-homogeneity by the following two conditions.

Condition A. Let P and Q be finite disjoint sets, let y be a point of F—P, and let

V be an open set in F. If some member of GF maps y into V then some member of

GF maps y into V— Q leaving P pointwise fixed.

Condition B. 7/{xa} is a net in F not converging to xe F then there is a subnet

{>V} °f{x\} and a map g e GF such that g(yß)=yufor all p. andg(x)^=x.

Frequently our arguments parallel those in [2] although Condition A is a good

deal weaker than co-homogeneity and applies to a much wider class of spaces.

§2 consists of preliminary results. In §3 we prove the main theorems of this paper,

Theorems 3.1 and 3.2. In the second of these we show that Condition B may be

replaced by 1-homogeneity. In §4 we give examples of spaces which are not

co-homogeneous but which satisfy A. These include certain manifolds and manifold-

like spaces.

Finally, in §5 we introduce the notion of a determining group and using this

notion and our previous results we prove that no conditions whatever are needed

if £' and £ are manifolds of dimension at least 3.

Notation and conventions. Most of our notation can be found in [2]; for

completeness a summary is given here.
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All spaces are assumed to be Tx, so that complements of finite sets are open.

The point-open topology for GF has a basis of sets of the form

{feGF\f{xi)eUi,i= 1,...,«}

where the x¡ are in F and the Ut are open in F. If the number of points in the basis

element is irrelevant the above set will be denoted W[xí, U¡]. For convenience we

adopt the convention that the x¡ appearing in the basis element are distinct.

The notation x is used for a point of the A>fold Cartesian product Fk, no two

coordinates of which are equal (what k is will be clear from the context); the ith

coordinate of x is denoted x¡. Similarly U stands for the open set Ux x ■ ■ ■ x Uk

where each U{ is open in F. Thus W[x, U] represents a typical basis element in Gf-

GF acts on Fkcoordinatewise; i.e., if 77sGF then H{x) = {{h{xx),..., h{xk)) \ h e 77}

and if « e 77 then h{LJ) = h{Ux) x • • • x h{Uk).

The composition of functions is denoted by juxtaposition; gf{x)=g{f{x)).

By "manifold" we mean a topological «-manifold; we make no a priori con-

nectedness or boundary assumptions. Many of the topological concepts we use

are to be found in [1].

Remark. For the applications of the next section the following version of Con-

dition A is more suitable than the simple form given above. Let xx,..., x„, yx,...,

ym be distinct points and let Vx,..., Vm be open sets such that, for i= 1,..., m,

GF{yt) n V¡ # 0. Given any finite set Q, there is « in GF such that h{xt) = x¡ for

i=l,...,n and h{y¡)e Vx—Q for i—l,...,m. This statement follows from

repeated applications of the original Condition A.

The author wishes to thank both M. T. Wechsler, who read a preliminary

version of this paper and suggested the use of determining subgroups in Theorem

5.1, and the referee whose comments shortened and improved several proofs.

2. Preliminary results. Throughout this section, x denotes a point of a space F

which satisfies Condition A.

We begin by establishing two lemmas of a technical nature. The first is used

throughout the paper, the second in the proof of Theorem 2.3.

Lemma 2.1. Let W= W[x, Ü] be nonvoid in GF and let g be a member of GF such

that g{x),xx,...,xk are distinct {x = {xx,..., xk)). There is f in W such that

figix)) = x.

Proof. Choose « 6 IP and let h~\U)= V. Now W[g~Ax), U] contains hg, hence

is nonvoid, and the points x, g~\xx),.. .,g~\xk) are distinct, so it follows from

Condition A that there is /0 in GF such that/0(x)=x and (/0g_1)(x)e U. Let

f=fog~\ then f{g{x)) = fAx) = x and f{x)=fo{g~\x)) e Ü, i.e.Je W.

Lemma 2.2. Let g be in the open set W= W[x, U]. There is a neighborhood U of x

in F such that ifyeUn GF{x) then for some fin GF,f{x)=y andfe W[x, g~\U)].

Proof. First suppose x^x¡ for all i. Let U= F-{xx,..., xk}, thus Uis open and
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contains x. Suppose yeUc\GF(x), say y=h(x) for some h in GF. Since

W[x, g-1((7)] is nonvoid (it contains the identity map of £) and since the points

x=h~\y), xx,..., xk are distinct, Lemma 2.1 implies that there is / such that

f(h~1(y))=y andfe W[x, g'\U)]. Since h~\y)=x, we are done in this case.

Now suppose x=some Xy, say x=Xy. Let U=F—{x2,..., xk} n g~\Uy). Again

U is a neighborhood of x. If y e U n GF(x) and y^x then, as above, Lemma 2.1

applies to give the desired/ If y = x then we take/to be the identity map.

The next result gives a relationship between certain quotient spaces of GF and

subsets of £. It is the analogue of Theorem 2.6 of [2]. We use the following notation.

If 77 is a subgroup of GF then Gf/77 is the collection of left cosets with the quotient

topology. For each x e F the subgroup of maps leaving x fixed is denoted Gx, and

6X is the map of GFIGX into £ given by: Ox(gGx)=g(x).

Theorem 2.3. 8X is a homeomorphism ofGF\Gx onto GF(x).

Proof. It is easy to see that 6X is well defined, one-to-one, and onto.

Let v denote the quotient map of GF onto GF¡GX. The map 9X is continuous if

the composition 6xv is [1, Theorem 9, p. 95] and a simple argument shows that if

6xv is open then so is 6X.

Thus, continuity of 9X follows immediately from the fact that GF has the point-

open topology. To see that 6X is open, let W= W[x, U] be a basis element for the

point-open topology and let V= 6xv(W)={g(x) \ g e W). We must show V is open

in the relative topology for GF(x).

Suppose j g V, say y=g(x) for some g in W. Choose an open set U in £ satisfying

the requirements of Lemma 2.2. Then 0= U n GF(x) is a neighborhood of x in

GF(x) and g(0) is a neighborhood of y in GF(x). We show that g((7)£ V. Let z

be in g(0), say z=g(w) for some we 0. Choose / such that f(x) = w and

fe W[x, g-\U)] and let h=gf. Then « g W[x, U]=W and h{x)=gf{x)=g{w) = z.

Since z was arbitrary in g{Ü) we have shown that g(0)^ V. Since y was arbitrary

in V this shows V is open in GF(x) and completes the proof of the theorem.

The final result of this section is crucial in the proof of the main theorem.

Points x and y of Fk are independent provided no component of x is a component

of y.

Lemma 2.4. Let H be a subgroup ofGF and suppose W[x, U] is a nonvoid open set

missing 77 where x e Fk, k^zl. Suppose there is y in Fk such that y is in H(x) and x

and y are independent. Then x lies in infinitely many distinct sets of the form gH(x).

Proof, x is certainly in H(x). Suppose we have n distinct sets gi77(x), g2H(x),...,

gnH(x) («^ 1) containing x; we show there is gn+1H(x), distinct from the previous

sets, containing x.

Case 1. Suppose H(x) contains «+1 independent elements, say x,Xy,...,xn.

For each i'=l,...,« write Xy = {y\,..., yk). For fixed z' and any/ (1^/^A:),

GF(y)) = GF(x¡) meets ¿7, and hence meets gy(U,). By Condition A there is a function
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gn+x such that gn+1(x,)=x¡ for i=l,...,k and gn+A/i) e &(£/,) for i'= 1,..., « and

y= 1,..., A:. Thus gn+1(x)=x and for ¿=l,...,/i, g„+1(x() eg,(t/). The first

condition on gn+1 implies that xegn+177(x). The second condition implies that

gn+177(x) is distinct from g¡H{x) for l¿/¿n, because gn + 1(x¡) meets gt{Ü) while

g¡(x() does not (77 misses W[x, £/]).

Case 2. Suppose 77(x) contains at most n independent elements. The same is

true of the sets gtH{x), i= 1,...,«. It follows that there is a finite set g <= F such that

if w = {wx,.. .,wk)is in Fk and no wl is in Q then w is in no gtH{x). We have inde-

pendent points x and y in 77(x); apply Condition A to get a map gn+1 such that

gn+1(x)=x and gn + x{yù e F- Q for i=l,...,k (where y={yx,..-,yk)). Since

g„+Ay) is no gtH{x), for 1 gig«, gn+177(x) is distinct from gi77(x),. ..,gnH{x)

and we are done.

3. The main theorem.

Theorem 3.1. Let F' and F be spaces satisfying Condition A and let $ be an

isomorphism of GF onto GF which is also a homeomorphism. For each x in F',

$>{GX) is the subgroup Gy of a point y of F. The induced function x ->yfrom F' into

F is one-to-one and onto.

Proof. Fix xeF' and let 77= 0>{Gx) ; thus 77 is a proper closed subgroup of GF

and, for some «, there exist xe Fn and U<=Fn such that the nonvoid basic open set

W= W[x, Ü] in GF misses 77. We assume « is the smallest integer with this property.

We first show n= 1 and 77(x) is a single point of F1 = F. Suppose not; then 77(x)

contains two independent points x and y. (This is trivial if « = 1 while, if n> 1, it

follows from Lemma 3.14 of [2].) By our Lemma 2.4 there exist infinitely many

distinct sets {gtH{x) | i'=l, 2,...} each containing x. In particular, the cosets

{g¡H | i= 1,2,...} are distinct.

Let V=<S>-\W); since V is open in GF. it contains a nonvoid basic open set,

^[Ji> U(], j = 1,..., m. Let A( = 0-1(&) for /= 1,2,.... Since the sets

{A,G,|f~ 1,2,...}

are distinct, we may choose k so that hk{x), yx, ■ ■ ■, ym are distinct. By Lemma 2.1

there is ge GF. such that ge W[yK, t/,]<= V and ghk{x) = x, i.e., ghkGx=Gx. Thus

/= cj>(g) is a map in GF such that fe <D( V) = W and fgkH= 77. Since x e gkH{x), we

have from the last condition that/(x) e H{x). But 77(x) n U= 0 and W= W[x, Ü];

so we have a contradiction.

To summarize, we have shown that 77(x) is a single point of F, say H{x) = {y}.

It follows that 77sGy and we next show that H=Gy.

Suppose there is g e Gy- 77, then putting /= $ " Ag) we have fe GF.-GX. We

show that GxfGx is dense in Gr. Let W= W[Xi, C/(], i= 1,..., «, be nonvoid and

open in GF*. Since/(x)^x there is, by Condition A, a map hx such that hx{x)=x

and «i(x,)^/_1(x) for i= 1,..., «; i.e., «j e Gx and/«i(xf)/x for /= 1,..., «. Now

again by Condition A, there is h2 such that h2{x)—x and h2fhx{x^ e £/,, /'= 1,..., «.
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Thus h2fhx g GxfGx n W and GxfGx is dense. But then ^(GxfGx) is dense in GF

which is absurd since <í>(GxfGx)^ HGyH= Gy which is a proper closed subgroup

of GF.

Thus we have: 0(G*) = Gy. Obviously a dual result holds for 0_1 so that the

induced correspondence x -> y from £' into £ is one-to-one and onto.

Theorem 3.2. Let £', £, and <D Z>e as in Theorem 3.1, a«c7 let <f> be the map of F'

onto F given by: <f>(x)=y where <¡>(Gx) = Gy. Then </> is a homeomorphism if(i) both

spaces satisfy Condition B, or, (ii) both spaces are l-homogeneous.

Remark. If both spaces are assumed to satisfy the first axiom of countability

then Condition B can be replaced by the corresponding statement for sequences.

Proof. Suppose Condition B holds in £ and let {xA} he a net in £' converging

to x. If {</>(xA)} does not converge to (p(x) in £ then there is a subnet {yu} of {^(x^)}

and a function g in f]u Gyu — G„,(x). Put zli = <p~1(yll), then {z„} is a subnet of {xA}

and O " \g) is in (~]u GSu — Gx. Since {z#} converges to x this is impossible. Thus

<p is continuous. Dually, if £' satisfies Condition B then ç£_1 is continuous.

For the second part of the proof, assume both spaces are l-homogeneous. Fix

a point x of £' ; then we have :

£' = GAx) X GF/GX X GF/GM X GF(<p(x)) = £,

where « denotes a homeomorphism. The first and last equality signs follow from

1-homogeneity, the first and last homeomorphisms from Theorem 2.3, and the

middle homeomorphism is induced by 0. The composition of these maps yields a

homeomorphism >p and we assert that </> = çi. It is enough to prove that for each

g in GF>, Kg(x)) = <f>(g(x)). One easily verifies that 4>(g(x)) = ®(g){f>(x)). This last

expression is (f>(g(x)) if and only if ^(G,ix)) = GWg)((Kjc)). But

4>(G9tó) = OígG.g-1) = ^>{g)GM<î>{g)-1 = G«9)«M*>»       Q-E.D.

4. Condition A. Most of this section is devoted to exhibiting spaces to which

Theorem 3.1 applies, i.e., spaces in which Condition A holds. At the end we give a

condition which is necessary in order that a space satisfy Condition A.

We remark that Theorem 2.3 applies to all spaces mentioned below. In all these

spaces Condition B holds although the second part of the theorem applies directly

in the co-homogeneous case.

To begin with, any co-homogeneous space satisfies Condition A; this includes

all connected manifolds without boundary of dimension at least 2, the Hilbert

cube, and some totally disconnected spaces such as the Cantor set or the set of

points with rational coordinates in £n.

More generally let M he a connected manifold whose boundary dM has

dimension at least 2 and suppose no two components of dM are homeomorphic,

then M satisfies Condition A.
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Question. Let M be a connected manifold of dimension at least 3 and let K
o

be a subset of a component of dM. If K satisfies Condition A then does M u K

satisfy Condition A?

Spaces satisfying the condition can be manufactured by patching together

manifolds of different dimensions. As an example, let F= B* u T where 7J4 is the

standard 4-ball in E* with the north pole removed and T is a 3-cell in E4 such that

T n B* = dT is the 2-sphere {{xx,..., x4) e dB* | x4 = 0}.

It should be pointed out that a space need not be connected or totally dis-

connected in order that it satisfy Condition A. Let F be a space each component

of which is open in F and satisfies Condition A; then if no two components of F

are homeomorphic, F satisfies A.

We end this section by giving a necessary condition that a space satisfy Condition

A. This is a take-off on the fact that a circle is not 4-homogeneous. Let us say that

a subset S of a space F contains a free arc if it contains an arc A with endpoints

a and b such that, with the relativized topology, A—{a, b} is open in S. Our con-

dition can be stated as follows : 7« order that F satisfy Condition A it is necessary

that, for each x in F, GF{x) contains no free arc.

We sketch a proof of this fact. Suppose y is a homeomorphism of 7= [0, 1] into

F such that y{I)^GF{x) for some x and y((0, 1)) is open relative to GF{x). Let

y=y{0), xx = y{l¡4), x2=y(l/2), x3=y(3/4) and let U be open in F such that

i/o G,(x) = y((l/4, 1/2)). Since GF{x) = GF{y) we have GF{y) n U+ 0. One then

shows by an order argument that no member of GF (indeed, no self-homeo-

morphism of GF{x)) leaves xx, x2, and x3 fixed and takes y into U; thus Condition

A fails.

5. A better theorem for manifolds. In the preceding sections we have not used

the hypothesis that GF consists of all self-homeomorphisms of F This fact is

important; we shall show that for manifolds a sharpening of the previous results

is obtained by using fewer homeomorphisms.

A subgroup H of GF is a determining group if Conditions A and B hold with GF

replaced by 77. Clearly what is proved in §§2 and 3 is that if 77' and 77 are deter-

mining groups for spaces F' and F then a map $ ofH' onto 77 which is an isomorphism

and a homeomorphism induces a homeomorphism of F' onto F.

Using this notion we circumvent Conditions A and B as hypotheses to obtain

the following very general theorem.

Theorem 5.1. Let M and N be manifolds of dimension at least 3 {with or without

boundary, connected or disconnected) and suppose O is an isomorphism and homeo-

morphism of GM onto GN. Then 0 induces a homeomorphism of M onto N.

Proof. Let CM denote the component of the space GM containing the identity

map eM of M and define CN similarly. Then <I>(CM) = CN. We shall show below that

CM and CN are determining subgroups for M and N, hence, by the above remarks,

there is an induced homeomorphism as asserted.
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Let 77M denote the subgroup of GM consisting of all homeomorphisms leaving

each component of M and each component of dM fixed. (If M or dM is connected

delete the corresponding restriction.) We prove that 77M = CM. It is easy to see that

77M is a closed subgroup of GM containing eM. If g e GM - HM then there exist

distinct components K and £' of either M or dM such that g(K) = K'. Pick x e K

and let U be an open set containing £' and missing every component of M or dM

which misses £'. Then W[x, U] is an open and closed set in GM containing g and

missing 77M. This implies that CM s 77M. To complete the proof it suffices to show

77M is connected.

Let W= W\xy, Uy] he open in GM and suppose W n 77M is non void. Thus, each

Uy meets the component of M containing Xy and, if xt e dM, then Ut meets the

component of dM containing xt. From these facts and the fact that M has dimension

at least 3 we can obtain an isotopy {gt | Ozitzi 1} with the following properties:

go = ^M, gt e 77M for all / and gx(xy) e Uy for each i. This isotopy is a connected

subset of GM, lying in 77M, joining eM to W. It follows that 77M is connected, thus

77M = Cm-

Clearly the dimension requirements insure that 77M is a determining group. A

dual result holds for N and the proof is complete.
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