On parabolic and umbilic points of immersed hypersurfaces
HTML articles powered by AMS MathViewer
- by E. A. Feldman
- Trans. Amer. Math. Soc. 127 (1967), 1-28
- DOI: https://doi.org/10.1090/S0002-9947-1967-0206974-1
- PDF | Request permission
References
- E. A. Feldman, The geometry of immersions. I, Trans. Amer. Math. Soc. 120 (1965), 185–224. MR 185602, DOI 10.1090/S0002-9947-1965-0185602-6
- E. A. Feldman, Geometry of immersions. II, Trans. Amer. Math. Soc. 125 (1966), 181–215. MR 200932, DOI 10.1090/S0002-9947-1966-0200932-8
- E. A. Feldman, The geometry of immersions. II, Bull. Amer. Math. Soc. 70 (1964), 600–607. MR 163322, DOI 10.1090/S0002-9904-1964-11210-6
- William Francis Pohl, Differential geometry of higher order, Topology 1 (1962), 169–211. MR 154293, DOI 10.1016/0040-9383(62)90103-9
- Hassler Whitney, Elementary structure of real algebraic varieties, Ann. of Math. (2) 66 (1957), 545–556. MR 95844, DOI 10.2307/1969908 H. Hopf, Lectures on differential geometry in the large, Mimeographed notes, Stanford Univ., Stanford, Calif., 1956.
- Dirk J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley Press, Inc., Cambridge, Mass., 1950. MR 0036551
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 127 (1967), 1-28
- MSC: Primary 57.20; Secondary 53.74
- DOI: https://doi.org/10.1090/S0002-9947-1967-0206974-1
- MathSciNet review: 0206974