Operators commuting with Boolean algebras of projections of infinite multiplicity
HTML articles powered by AMS MathViewer
- by L. Tzafriri
- Trans. Amer. Math. Soc. 128 (1967), 164-175
- DOI: https://doi.org/10.1090/S0002-9947-1967-0211283-0
- PDF | Request permission
References
- William G. Bade, Weak and strong limits of spectral operators, Pacific J. Math. 4 (1954), 393–413. MR 63567
- William G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345–360. MR 73954, DOI 10.1090/S0002-9947-1955-0073954-0
- William G. Bade, A multiplicity theory for Boolean algebras of projections in Banach spaces, Trans. Amer. Math. Soc. 92 (1959), 508–530. MR 108729, DOI 10.1090/S0002-9947-1959-0108729-0
- Nelson Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321–354. MR 63563 N. Dunford and J. Schwartz, Linear operators. I, Interscience, New York, 1958.
- Nelson Dunford, A spectral theory for certain operators on a direct sum of Hilbert spaces, Math. Ann. 162 (1965/66), 294–330. MR 190772, DOI 10.1007/BF01369105
- S. R. Foguel, Sums and products of commuting spectral operators, Ark. Mat. 3 (1958), 449–461. MR 104154, DOI 10.1007/BF02589499
- S. R. Foguel, The relations between a spectral operator and its scalar part, Pacific J. Math. 8 (1958), 51–65. MR 96976
- S. R. Foguel, Normal operators of finite multiplicity, Comm. Pure Appl. Math. 11 (1958), 297–313. MR 117579, DOI 10.1002/cpa.3160110304
- S. R. Foguel, Boolean algebras of projections of finite multiplicity, Pacific J. Math. 9 (1959), 681–693. MR 108737
- C. A. McCarthy, Commuting Boolean algebras of projections, Pacific J. Math. 11 (1961), 295–307. MR 125448
- L. Tzafriri, Operators commuting with Boolean algebras of projections of finite multiplicity, Pacific J. Math. 20 (1967), 571–587. MR 208387
- John Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355–361. MR 63564
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 128 (1967), 164-175
- MSC: Primary 47.30
- DOI: https://doi.org/10.1090/S0002-9947-1967-0211283-0
- MathSciNet review: 0211283