CONTINUITY OF LINEAR OPERATORS COMMUTING WITH CONTINUOUS LINEAR OPERATORS

BY

B. E. JOHNSON

1. Introduction. In [6] and [8] we showed that centralisers (that is operators commuting with multiplication) on certain Banach algebras are necessarily continuous. In the present paper we consider whether an operator on a Banach space commuting with a continuous or a closed operator must itself be continuous. We also consider the more general problem of whether an operator $S; E_1 \rightarrow E_2$, satisfying $ST_1 = T_2 S$, with T_1, T_2 continuous, must be continuous. If the operators T_1, T_2 are operators of scalar type [3, p. 226] or operators in BK spaces [15, p. 29] given by triangular matrices, we see that the only discontinuous S are the obvious ones. In §8 we consider operators in $L_1(-\infty, +\infty)$ and $C_0(-\infty, +\infty)$ commuting with the translation operator $(Tf)(x) = f(x + 1)$. For the L_1 space any operator commuting with T is continuous, whereas in $C_0(-\infty, +\infty)$ we can find a discontinuous operator commuting with all the translation operators.

A full solution to this problem might be useful in discussing the extent to which discontinuous homomorphisms between Banach algebras exist since if ϕ is a homomorphism it satisfies $\phi(ab) = \phi(a)\phi(b)$ which can be written $\phi L_a = L_{\phi(a)} \phi$ where $L_a x = ax$.

2. Discontinuous commutants. The Banach-Steinhaus theorem [2, p. 27] makes it necessary to employ transfinite methods to "construct" discontinuous operators in Banach spaces. Thus it can be difficult, when considering whether there are discontinuous operators satisfying certain conditions, to show that the answer is affirmative. We consider two cases in which the construction is simple. First, however, some notation.

Throughout the paper $\mathcal{B}(E, F)$ will denote the space of continuous linear transformations from E into F. We write $\mathcal{B}(E) = \mathcal{B}(E, E)$. For any linear transformation S, $\mathcal{R}(S)$, $\mathcal{N}(S)$, $\sigma(S)$ and $\sigma_p(S)$ will denote the range, null space, spectrum and point spectrum of S respectively. Transformations are not necessarily continuous unless specifically stated to be so. Similarly, when we speak of the codimension of a linear subspace L of a vector space E we mean the number of elements of a Hamel basis in E/L. Finally, all vector spaces will be over \mathbb{C}, the field of complex numbers, unless (in part of §8) specifically stated to be otherwise.

2.1. Lemma. Let E_1, E_2 be two topological vector spaces, $T_1 \in \mathcal{B}(E_1)$, $T_2 \in \mathcal{B}(E_2)$ and $\lambda \in \sigma_p(T_2)$ such that $\mathcal{R}(T_1 - \lambda I_1)$ is not closed in E_1. Then there is a discontinuous linear map $S; E_1 \rightarrow E_2$, with $ST_1 = T_2 S$.

Received by the editors October 1, 1965.
CONTINUITY OF LINEAR OPERATORS

Proof. Let S be a linear transformation on E_1 into $\mathcal{N}(T_2 - \lambda I_2)$ (I_1, I_2 are the identity operators in E_1, E_2) which is zero on $\mathcal{R}(T_1 - \lambda I_1)$ but not on its closure. Such a transformation can easily be constructed using a Hamel basis. Then $S(T_1 - \lambda I_1) = 0 = (T_2 - \lambda I_2)S$ and so $ST_1 = \lambda S = T_2S$.

2.2. Remark. A similar construction will give the same result if we assume $\mathcal{R}(T_1 - \lambda I_1)$ closed and of infinite codimension, unless every linear transformation of $E_1/\mathcal{R}(T_1 - \lambda I_1)$ into $\mathcal{N}(T_2 - \lambda I_2)$ is continuous. This would certainly not be the case if E_1 were a metrisable locally convex space.

The following will make the statement of some of our theorems easier.

2.3. Lemma. Let E, F be two Fréchet spaces, $T \in \mathcal{B}(E, F)$ with $\mathcal{R}(T)$ of finite codimension. Then $\mathcal{R}(T)$ is closed.

This result for Banach spaces is Lemma 332 on p. 275 of [9]. The proof for Fréchet spaces is the same.

We conclude with two extremely useful results. T_1, T_2 are linear operators in the vector spaces E_1, E_2 and S is a linear operator $E_1 \rightarrow E_2$ with $ST_1 = T_2S$. We shall say that S commutes with $\{T_1, T_2\}$.

2.4. Lemma. If R is a rational function regular on $\sigma(T_1)$ and $\sigma(T_2)$ then $SR(T_1) = R(T_2)S$.

2.5. Lemma.

(i) $\mathcal{N}(T_1) \subset \mathcal{N}(T_2)$.

(ii) $\mathcal{R}(T_1) \subset \mathcal{R}(T_2)$.

(iii) If S is one-to-one then $\sigma_p(T_1) \subset \sigma_p(T_2)$.

3. Operators commuting with normal operators. Throughout this section and the next T, T_1, T_2 are bounded normal operators in the Hilbert spaces H, H_1, H_2 respectively and S is a linear operator from H_1 into H_2 commuting with $\{T_1, T_2\}$. $E(\lambda)$, $E_1(\lambda)$, $E_2(\lambda)$ are the resolutions of the identity for T, T_1, T_2 (see [4, p. 889]; we shall use results in Chapter X of [4] without further reference).

3.1. Lemma. Let A be an index set, L a linear map $H_1 \rightarrow H_2$ and, for each $\alpha \in A$, P_α an orthogonal projection in H_2 with $P_\alpha L$ continuous. Let $N = \bigcap \mathcal{N}(P_\alpha)$ ($\alpha \in A$) and let P be the orthogonal projection onto N^\perp. Then PL is continuous.

Proof. If $x_n \rightarrow 0$ in H_1, $PLx_n \rightarrow y$ in H_2 then, since P, P_α are projections with $\mathcal{N}(P) \subset \mathcal{N}(P_\alpha)$, we have $P_\alpha P = P_\alpha$ and so $P_\alpha L x_n = P_\alpha P L x_n \rightarrow P_\alpha y$. But as $P_\alpha L$ is continuous this implies $P_\alpha y = 0$ for all $\alpha \in A$, that is $y \in N$ and $Py = 0$. However $y = \lim_n PLx_n = \lim_n P(PLx_n) = Py = 0$ and so PL is continuous by the closed graph theorem.

3.2. Theorem. Let G be an open set in C. Then

$$\bigcap_{\lambda \in G} \mathcal{R}[(T - \lambda)^2] = \mathcal{N}(E(G)) = \mathcal{R}(I - E(G)).$$
Proof. (i) \(\xi \in \bigcap_{\lambda_0 \in G} \mathcal{R}[(T - \lambda_0 I)^2] \) if and only if \((\lambda - \lambda_0)^{-2} \in L_1(\mu) \) for all \(\lambda_0 \in G \), where \(\mu(X) = E(X)\xi \).

Suppose \((T - \lambda_0 I)^2 \eta = \xi \) and put \(\nu(X) = E(X)\eta \). Then

\[
\mu(X) = E(X) \int_C (\lambda - \lambda_0)^2 E(d\lambda)\eta
= \int_X (\lambda - \lambda_0)^2 \nu(d\lambda),
\]

so that \(\mu = (\lambda - \lambda_0)^2 \nu \). Thus if \(\xi \in \mathcal{R}[(T - \lambda_0 I)^2] \), then \((\lambda - \lambda_0)^{-2} \in L_1(\mu) \).

Conversely if \((\lambda - \lambda_0)^{-2} \in L_1(\mu) \), writing \(\eta = \int_C (\lambda - \lambda_0)^{-2} \nu(d\lambda) \) we have

\[
(T - \lambda_0 I)^2 \eta = \int_C (\lambda' - \lambda_0)^2 E(d\lambda')\eta
= \int_{\lambda' \in C} \int_{\lambda \in C} (\lambda' - \lambda_0)^2 E(d\lambda')(\lambda - \lambda_0)^{-2} E(d\lambda)\xi
= \int_C E(d\lambda)\xi
= \xi.
\]

(ii) \((\lambda - \lambda_0)^{-2} \in L_1(\mu) \) for all \(\lambda_0 \in G \) if and only if \(\mu(G) = 0 \).

The "if" is obvious. For the "only if" let \(C_0 \subseteq C \) be a square, with sides of length \(D \) parallel to the real and imaginary axes, together with its interior. Let \(\{C_n\} \) be a sequence of similar squares defined inductively so that \(C_{n+1} \) is one of the quarters of \(C_n \) with \(||\mu(C_{n+1})|| \geq 4^{-n} ||\mu(C_n)|| \). Then

\[
||\mu(C_0)|| \geq 4^{-n} ||\mu(C_0)|| \geq 0
\]

and the diameter of \(C_n \) is \(2^{-n}D\sqrt{2} \). Let \(\lambda_0 \) be the point common to the squares \(C_n \). Then \(\int_{C_n} (\lambda - \lambda_0)^{-2} d\mu \to 0 \) as \(n \to \infty \). However

\[
\left| \int_{C_n} (\lambda - \lambda_0)^{-2} d\mu \right| \geq (2^{-n} D\sqrt{2})^{-2} \||\mu(C_n)||
\geq (2^{-n} D\sqrt{2})^{-2} 4^{-n}||\mu(C_0)||
= (2D^2)^{-1} ||\mu(C_0)||
\geq 0
\]

so that \(\mu(C_0) = 0 \). Since \(G \) can be written as the union of a sequence of such squares (e.g., those with rational vertices), we have \(\mu(G) = 0 \).

(iii) \(\mu(G) = 0 \) if and only if \(\xi \in \mathcal{N}(E(G)) \).

This follows directly from \(\mu(G) = E(G)\xi \).

(i), (ii), and (iii) together give a proof of the theorem.

3.3. Definition. \(\lambda \) is said to be a critical eigenvalue of \(\{T_1, T_2\} \) if \(\lambda \in \sigma_p(T_2) \) and \(\mathcal{R}(T_1 - \lambda I) \) is of infinite codimension.

Since \(T_1 \) is normal this is the same as saying that \(\lambda \in \sigma(T_1) \cap \sigma_p(T_2) \) and \(\lambda \) is not
an isolated point of \(\sigma(T_1) \) corresponding to a finite dimensional space of eigenvectors.

3.4. Theorem. \(S = B + K_1 + \cdots + K_n \) where \(B \in \mathcal{B}(H_1, H_2) \), \(\lambda_1, \ldots, \lambda_n \) are critical eigenvalues of \(\{T_1, T_2\} \) and for each \(i \), \(K_i \) is a discontinuous map from \(H_1 \) into \(\mathcal{N}(T_2 - \lambda_i I_2) \) which is zero on \(\mathcal{R}(T_1 - \lambda_i I_1) \). The operators \(K_i \) and \(B \) all commute with \(\{T_1, T_2\} \).

Proof. Call a point \(\lambda \in C \) such that \(E_2(N)S \) is discontinuous for every neighborhood \(N \) of \(\lambda \) a discontinuity value. A discontinuity value clearly lies in \(\sigma(T_2) \). We first show that the set of discontinuity values is finite.

Suppose the discontinuity values form an infinite set. Then we can find a sequence \(\lambda_1, \lambda_2, \ldots \) of discontinuity values and a neighborhood \(N_i \) of each \(\lambda_i \) such that the \(N_i \) are disjoint. For each \(i \), let \(\xi_i \in H_1 \) with \(\|\xi_i\| < 2^{-i} \) and \(\|E_2(N_i)S\xi_i\| > 2^i \). Put \(\eta = \sum_{i=0}^{\infty} E_1(N_i)\xi_i \). By 2.4, 2.5 and 3.2, for any open set \(N \) in \(C \),

\[
\mathcal{R}(I_1 - E_1(N)) \subset \mathcal{N}(E_2(N)),
\]

so that \(E_2(N)S = E_2(N)SE_1(N) \). Hence

\[
E_2(N_1)S\eta = E_2(N_1)SE_1(N_1)\eta = E_2(N_1)SE_1(N_1)\xi_1 = E_2(N_1)S\xi_1.
\]

so that \(\|S\eta\| \geq \|E_2(N_1)S\eta\| \geq 2^i \) for all \(i \).

Put

\[
\mathcal{G} = \{G; G \text{ an open set in } C, E_2(G)S \text{ is continuous}\}.
\]

If \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the discontinuity values, \(\bigcup \mathcal{G} = C\{\lambda_1, \ldots, \lambda_n\} \) and, since \(\bigcup \mathcal{G} \) can be written as the union of a countable subset of \(\mathcal{G} \), \(I_2 - E_2(\{\lambda_1, \ldots, \lambda_n\}) \) is the orthogonal projection whose null space is \(\mathcal{N}(E(G)) \) \((G \in \mathcal{G}) \). Thus by 3.1 \(B = [I_2 - E_2(\{\lambda_1, \ldots, \lambda_n\})]S \) is continuous.

Put \(K_i = E_2(\{\lambda_i\})S \). We then have \(S = B + K_1 + \cdots + K_n \). Also

\[
BT_1 = [I_2 - E_2(\{\lambda_1, \ldots, \lambda_n\})]ST_1
= [I_2 - E_2(\{\lambda_1, \ldots, \lambda_n\})]T_2S
= T_2[I_2 - E_2(\{\lambda_1, \ldots, \lambda_n\})]S
= T_2B.
\]

Similar calculations show that the \(K_i \) commute with \(\{T_1, T_2\} \). If \(N_i \) is an open neighborhood of \(\lambda_i \) not containing any other discontinuity values, then \(E_2(N_i)S = E_2(N_i)B + K_i \) is not continuous so that \(K_i \) is not continuous. We have \(\mathcal{B}(K_i) \subset \mathcal{B}(E_2(\lambda_i)) = \mathcal{N}(T_2 - \lambda_i I_2) \) and

\[
S\mathcal{B}(T_1 - \lambda_i I_1) = \mathcal{B}(E_2(\lambda_i)) \subset \mathcal{N}(E_2(\lambda_i))
\]

so that \(K_i \) is zero on \(\mathcal{B}(T_1 - \lambda_i I_1) \).

Since \(K_i \) is not continuous we have \(\mathcal{B}(K_i) \neq 0 \) and hence \(\lambda_i \in \sigma_p(T_2) \). If \(\mathcal{B}(T_1 - \lambda_i I_1) \) were of finite codimension it would be closed (Lemma 2.3) and \(K_i \) would be the
composition of the natural quotient map $H_1 \to H_1/\mathcal{R}(T_1 - \lambda_i I_1)$ and a map from the finite dimensional space $H_1/\mathcal{R}(T_1 - \lambda_i I_1)$ into H_2. Since both these maps are continuous K_i would be continuous. Thus we have $\lambda_i \in \sigma_p(T_2)$ and $\mathcal{R}(T_1 - \lambda_i I_1)$ of infinite codimension, that is λ_i is a critical eigenvalue.

3.5. **Corollary.** S can be discontinuous if and only if $\{T_1, T_2\}$ has critical eigenvalues.

Proof. Follows from 2.1, 2.2, 3.3 and 3.4.

3.6. **Corollary.** If $ST = TS$ then S can be discontinuous if and only if either $\sigma_p(T)$ contains points corresponding to eigenspaces of infinite dimension or $\sigma_p(T)$ contains points which are not isolated points of $\sigma(T)$.

4. **Operators commuting with sets of normal operators.** Suppose now that S satisfies a relationship $ST_1 = T_2S$ for a number of different pairs of normal operators. Theorem 3.4 then gives a decomposition of S for each pair and the question of when this implies the continuity of S arises. It would be pleasant to be able to deduce that, for S to be discontinuous, the pairs with which it commutes must have critical eigenvectors in common. The following example shows that this need not be so.

Let e_1, e_2, \ldots be a complete orthonormal sequence in the separable Hilbert space H and C the compact operator determined by $Ce_1 = 0$, $Ce_n = n^{-1}e_n$, $n = 2, 3, \ldots$. 0 is the only critical eigenvalue of $\{C, C\}$, the corresponding eigenvector being e_1. Let S be a discontinuous linear map of H into H with $SC = CS$. The unitary operator $U; H \to H$ defined by $U(\xi, \eta) = (\eta, \xi)$ has critical eigenvalues ± 1 with corresponding spaces $\{(\xi, \xi); \xi \in H\}$ and $\{(\xi, -\xi); \xi \in H\}$. We have

$$U \begin{bmatrix} S, 0 \\ 0, S \end{bmatrix} = \begin{bmatrix} 0, S \\ S, 0 \end{bmatrix} U$$ and $$\begin{bmatrix} C, 0 \\ 0, I + C \end{bmatrix} \begin{bmatrix} S, 0 \\ 0, S \end{bmatrix} = \begin{bmatrix} S, 0 \\ 0, S \end{bmatrix} \begin{bmatrix} C, 0 \\ 0, I + C \end{bmatrix},$$

$$\begin{bmatrix} S, 0 \\ 0, S \end{bmatrix}$$ discontinuous but U and $$\begin{bmatrix} C, 0 \\ 0, I + C \end{bmatrix}$$ have no common eigenvectors.

In particular the decomposition of S given by Theorem 3.4 is not unique. Applying 3.1 to S (S, T_1, T_2 as at the beginning of §3) with $\{P_\alpha; \alpha \in A\}$ as the set of all orthogonal projections P in H_2 with PS continuous we obtain the space N which depends on S only. Theorem 3.4 then shows that N is in $\mathcal{R}(E_2(\lambda_1, \lambda_2, \ldots, \lambda_n))$ a space spanned by the eigenvectors of T_2 corresponding to a finite number of critical eigenvalues of $\{T_1, T_2\}$. We can prove rather more.

4.1. **Theorem.** N is spanned by the eigenvectors of T_2 which it contains.

Proof. $N^\perp = \{x; y \to (Sy, x) \text{ is continuous}\}$.

Let $x = x_1 + \cdots + x_n \in N^\perp$ where, for each i, $x_i \in \mathcal{N}(T_2 - \lambda_i I_2)$. (The λ_i are, as in 3.4, the discontinuity values.) We shall prove that each $x_i \in N^\perp$. Suppose $x_1 \notin N^\perp$
and thus that \(f : y \mapsto (Sy, x_i) \) is not continuous. Let \(V \) be an open neighborhood of \(\lambda_1 \) with \(\lambda_i \not\in \mathbb{V}^{-1}, i=2, 3, \ldots, n \). We have

\[
S\mathcal{R}(T_1 - \lambda_i I_1) \subset \mathcal{R}[(T_2 - \lambda_i I_2)S] \subset \mathcal{N}(E_2(\{\lambda_i\})) \subset \{x_i\}^*, \quad i = 1, \ldots, n,
\]

and

\[
\mathcal{N}(E_1(V)) \subset \mathcal{R}(T_1 - \lambda_1 I_1)
\]

so that \(f \) is zero on \(\mathcal{N}(E_1(V)) \) and thus discontinuous on \(\mathcal{R}(E_1(V)) \). However we also have

\[
\mathcal{R}(E_1(V)) \subset \mathcal{R}(T_1 - \lambda_1 I_1), \quad i = 2, \ldots, n,
\]

so that \(y \mapsto (Sy, x_i) \) is zero on \(\mathcal{R}(E_1(V)) \) for \(i = 2, \ldots, n \), and so, on that space, \(f(y) = (Sy, x) \), which is impossible as \(f \) is not continuous there.

Hence

\[
W = \pi(I_2 - E_2(\{1, \ldots, n\})) + \sum_{i=1}^n \mathcal{N}(T_2 - \lambda_i I_2) \cap \mathcal{N}^*
\]

so that, since the spaces \(\mathcal{N}(T_2 - \lambda_i I_2), i = 1, \ldots, n, \) and \(\mathcal{R}(I_2 - E_2(\{1, \ldots, n\})) \) are mutually orthogonal,

\[
N = N^* = \sum_{i=1}^n \mathcal{N}(T_2 - \lambda_i I_2) \cap N.
\]

A necessary condition therefore for there to exist a discontinuous linear map \(S \) commuting with every element of a set \(\{(T_1, a), (T_2, a_i); a \in A\} \) of pairs of normal operators is that there should exist a subspace \(N \) of \(H_2 \) of nonzero dimension which, for each \(a \), is spanned by eigenvectors of \(T_{2,a} \) corresponding to a finite number of critical eigenvalues of \(\{F_{1,a}, F_{2,a}\} \). This condition is not sufficient.

5. Operators commuting with scalar type operators. We refer the reader to [3, p. 226] for a definition of scalar type operator. Let now \(H_1, H_2 \) be Banach spaces, \(T_i \in \mathcal{B}(H_i) \), a scalar type operator for \(i = 1, 2 \) and \(S \) a linear map from \(H_1 \) into \(H_2 \) with \(ST_1 = T_2S \). Theorem 3.4 applies to this situation but the proofs of the results on which it is based require slight changes. Lemma 3.1 is replaced by

5.1. Lemma. Let \(A \) be an index set, \(L \) a linear map \(H_1 \to H_2 \) and, for each \(a \in A \), let \(P_a \) be a bounded projection in \(H_2 \) with \(P_aL \) continuous. Let \(N = \bigcap \mathcal{N}(P_a) (a \in A) \) and \(P \) a bounded projection in \(H_2 \) with \(\mathcal{N}(P) \subset N \). Then \(PL \) is continuous.

Theorem 3.2 applies to the present case. In the proof of (ii) it is easier to consider the scalar measures \(\nu(X) = f(\mu(X)) = f(E(X)\xi) \) where \(f \in H_2^* \). The proof then shows that \((\lambda - \lambda_0)^{-2} \in L_1(\nu) \) for all \(\lambda_0 \in G \) if and only if \(f(\mu(G)) = 0 \). Since however we obtain this for all \(f \in H_2^* \) the result (ii) follows. The proof of Theorem 3.4 now goes through with little change.

6. Operators commuting with restrictions of normal operators. If \(H_1, H_2 \) are again Hilbert spaces, \(T_1, T_2 \) normal operators in \(H_1, H_2 \), which need not be bounded (see [4, p. 1258]) and \(S \) is a linear map from \(H_1 \) into \(H_2 \) with \(ST_1 \subset T_2S \) then \(S\mathcal{D}(T_1) \subset \mathcal{D}(T_2) \) and the results and proofs in §3 apply without change.

Sometimes it is possible to apply Theorem 3.4 to a situation in which \(T_1, T_2 \) are not normal operators by extending them to a larger space in which they are. It is
easy to see that if T_2 is an operator which can be extended to a normal operator T_3 in a larger space H_0 then $ST_1 = T_3 S$ and 3.4 can be applied. Cases involving the extension of T_1 are rather more difficult since in these S has to be extended. We give an example of a case in which this extension is possible.

Let now H_1 be the subspace of $H_0 = L_2((1 + t^2)\lambda)$, where λ is Lebesgue measure on $(-\infty, +\infty)$, consisting of boundary values of functions analytic in the upper half plane (this space is similar to Hoffman’s \mathcal{H} in [5, p. 131]). For $i=0, 1$, let T_i be the operator in H_i defined by $(T_i f)(t) = tf(t)$, $\mathcal{D}(T_i)$ being the set of all f in H_i for which $tf(t) \in H_i$. Let $\phi_n(t) = \pi^{-1/2}(t-i)^n(t+i)^{-n}$, n an integer. Then ϕ_n, $n = 0, 1, \ldots$, is an orthonormal basis for H_1 (the transformation $f(t) \to f(i(1+z)(1-z)^{-1}$) is a unitary transformation of H_1 onto H_2 and of H_0 onto L^2 of the circle), and the shift operator $U\phi_n = \phi_{n+1}$ is the Cayley transform of T_1. T_1 is in fact an elementary symmetric operator ([4, p. 1272]) and T_0 a self-adjoint operator.

Let now T_2 be a Hilbert space, T_2 a self-adjoint operator on T_2 and S a linear map of H_1 into T_2 with $ST_1 \subseteq T_2 S$. Put $f^*(i) = [f(i)]^-$. The subspaces H_1, H_1^* of H_0 then have only the constant function in common and together span H_0. If $f \in H_0$ we write $f = f_+ + f_-$ where $f_+ \in H_1$, $f_- \in H_1^*$, are indeterminate up to a constant. Since

$$
\sum_{i=0}^\infty \xi_i \phi_i \in \mathcal{D}(T_1)
$$

if and only if

$$
\sum_{j=0}^\infty \left| \sum_{i=0}^\infty \xi_i \right|^2 < \infty,
$$

and

$$
\sum_{i=-\infty}^\infty \xi_i \phi_i \in \mathcal{D}(T_0)
$$

if and only if

$$
\sum_{j=-\infty}^\infty \left| \sum_{i=0}^\infty \xi_i \right|^2 < \infty,
$$

for $f \in \mathcal{D}(T_0)$ there is exactly one choice of f_+, f_- with $f_+, f_-^* \in \mathcal{D}(T_1)$.

Take a conjugation $\#$ on H_2 commuting with T_2 for which $(S\phi_0)^\# = S\phi_0$ (such a conjugation can be constructed by taking a spectral representation U of T_3 as in [4, p. 1205], in which $S\phi_0$ is a real valued function and then writing $x^\# = U^{-1}(Ux)^-$ where for $\xi \in \sum L^2(\mu_a)$, $a \in A$, $\xi_a(t) = (\xi_a(t))^-$. Now put $S_0 f = Sf_+ + (Sf_-)^\#$. S_0 is a linear map from H_0 into H_2 and is well defined since $(S\phi_0^\#)^\# = S\phi_0$.

Let $f \in \mathcal{D}(T_0)$. Then

$$
S_0 T_0 f = S_0 T_0(f_+ + f_-)
$$

$$
= S_0 T_1 f_+ + S_0 (T_1 f_+)^*
$$

$$
= ST_1 f_+ + (ST_1 f_+^\#)
$$

$$
= T_2 S f_+ + T_2 (S f_+^\#)
$$

$$
= T_2 S_0 f.
$$
We thus have $S_0 T_0 \subseteq T_2 S_0$. Since the spectrum of S_0 is the whole real line the extended version of 3.4 discussed at the beginning of this section applies to show that if $\sigma_0(T_2)$ is void S_0 and hence S must be continuous. If $\sigma_0(T_2)$ is not void S can be discontinuous.

The case $S T_2 \subseteq T_2 S$ with T_2 self-adjoint and T_1 a maximal symmetric operator with deficiency indices $d_+ = 0$, $d_- = n$, n finite, can be shown to lead to the same result by decomposing H_1 into a direct sum $\mathcal{H}_0 \oplus \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_n$ where T_1 is self-adjoint on \mathcal{H}_0 and unitarily equivalent to the elementary symmetric operator considered above on $\mathcal{H}_1, \ldots, \mathcal{H}_n$. The case $d_+ = n$, $d_- = 0$ is solved by transferring to $-T_1$ whose indices are $d_+ = 0$, $d_- = n$ (see [4, p. 1272]).

These methods can also be applied to isometric operators to obtain similar results. In particular we can show that the isometric shift operator in $l_2(0, \infty)$ has the property that any map commuting with it is necessarily continuous—a result which can easily be seen directly and which also follows from Theorem 9.1. The author does not know whether the same applies to linear maps S in $l_2(0, \infty)$ commuting with the adjoint of the shift operator (that is the operation of shifting one place to the left, the a_0 coordinate being dropped).

7. Operators commuting with centralisers. In the following we use the terms regular and hermitian involution as defined in [11, p. 219] and [12, p. 189], respectively.

7.1. Theorem. Let A be a regular commutative semisimple Banach algebra with identity and hermitian involution. Let $x \in A$, J a closed ideal in A and G an open set in C. Then

$$\bigcap_{\lambda \in G} (x - \lambda e)J = \mathcal{I}'(\mathcal{x}^{-1}(G)).$$

(For any set X in \mathcal{M}_A, the maximal ideal space of A,

$$\mathcal{I}'(X) = \{j; j \in J, j(M) = 0 \text{ for all } M \in X\}$$

Proof. The second set clearly contains the first. Suppose $\lambda_0 \in G$ and $j \in \mathcal{I}'(\mathcal{x}^{-1}(G))$. We shall show that the function $\tilde{a}(M) = j(M)/(\mathcal{x}(M) - \lambda_0)$, taken as 0 when $\mathcal{x}(M) = \lambda_0$, is in fact the transform of some element a of J. Since G is open and \mathcal{x} continuous, $\tilde{a}(M) = 0$ for $M \in \mathcal{x}^{-1}(G)$, and so \tilde{a} belongs to J locally at all points of $\mathcal{x}^{-1}(G)$. Now suppose $\mathcal{x}(M_0) \neq \lambda_0$. Again using the properties of G and \mathcal{x} we can find a neighborhood N of M_0 with $|\mathcal{x}(M_0) - \mathcal{x}(M)| \leq |\mathcal{x}(M_0) - \lambda_0|$, and a closed neighborhood V of M_0 with $V \subseteq N$. Using the corollary on p. 224 of [11] we take $c \in A$ such that $\tilde{c}(M) = 1$ for $M \in V$ and $\tilde{c}(M) = 0$ for $M \notin N$. Replacing c by cc^* if necessary we can assume that \tilde{c} is nonnegative real valued. Let now

$$\alpha = \exp \{-i \arg (\tilde{\mathcal{x}}(M_0) - \lambda_0)\}.$$

The function $(1 - \tilde{c}) + i\alpha(\tilde{x} - \lambda_0)\tilde{c}$ takes the value 1 outside N whereas on N, $|\alpha(\tilde{x}(M) - \lambda_0) - \alpha(\tilde{x}(M_0) - \lambda_0)| < \alpha(\tilde{x}(M_0) - \lambda_0)$, so that $\alpha(\tilde{x}(M) - \lambda_0)$ has positive real part and thus $(1 - \tilde{c}) + i\alpha(\tilde{x} - \lambda_0)\tilde{c}$ is not zero on N either. Using Wiener's theorem we see that $-i\alpha^{-1}(e - \tilde{c}) + (x - \lambda_0)e\tilde{c}$ is
regular and, writing b for its inverse, $(jb)^{-1} = \hat{a}$ on V. This shows that \hat{a} belongs to J locally at all points of \mathcal{M}_A and so, by Theorem 3' on p. 225 of [11] there exists $a \in J$ whose Gel'fand transform is \hat{a}. Clearly $(x - \lambda a)e = j$.

7.2. Remark. The hermitian involution was used only to show that c could be taken to be real and so to construct a nowhere zero function in A^\wedge equal to $\hat{x} - \lambda_0$ in V. The same end can be achieved by supposing instead that the functions c are bounded (by K say) independently of N and V. In this case we choose N such that

$$|\hat{x}(M) - \hat{x}(M_0)| < K^{-1} |\hat{x}(M_0) - \lambda_0| \quad \text{for all } M \in N$$

and then we see that

$$(\hat{x}(M_0) - \lambda_0)(1 - \hat{c}(M)) + (\hat{x}(M) - \lambda_0)c = \hat{x}(M_0) - \lambda_0 + \hat{c}(M)(\hat{x}(M) - \hat{x}(M_0))$$

has the required properties.

We now state a result which is an extension of Lemma 3.1, and is proved by the same method.

7.3. Lemma. Let E, F be two Banach spaces, S a linear map from E to F and I an index set. For each $i \in I$ let E_i be a Banach space and P_i a continuous linear map from F into E_i such that P_iS is continuous. Put $N = \bigcap_i N(P_i)$ ($i \in I$) and let P be the canonical map of F onto F/N. Then PS is continuous.

If x is an element of an algebra A we shall write L_x for the operator $L_x(a) = xa$ for all $a \in A$.

7.4. Theorem. Let A, B be two commutative Banach algebras with identity, x, y elements and J, K ideals in A, B respectively. Suppose A is regular and has a hermitian involution and that B is semisimple. Let S be a linear map $J \rightarrow K$ commuting with $\{L_x, L_y\}$. If $\{L_x, L_y\}$ has no critical eigenvalue then S is continuous.

Proof. The proof is similar to that of 3.4. For any set X in C, $E_2(X)$ is defined as the canonical map of B into $B/\kappa'(\hat{y}^{-1}(X))$. The definition of discontinuity value is then as before.

In proving that the set of discontinuity values is finite we choose the open sets N_i in C such that N_i and $\bigcup_{i \neq j} N_j$ have disjoint closures, and then take $c_i \in A$ with $\hat{c}_i = 1$ in $\hat{x}^{-1}(N_i)$ and $\hat{c}_i = 0$ in $\hat{x}^{-1}[\bigcup_{i \neq j} N_j]$. Now take $\xi_j \in J$ with $\|\xi_j\| < 2^{-j} \|c_j\|^{-1}$ and $\|E_2(N_j)S\xi_j\| > 2^j$, and put $\eta = \sum c_i \xi_i$. Using 2.5 and 7.1 we see that

$$S\kappa'(\hat{x}^{-1}(G)) \subseteq \kappa'(\hat{y}^{-1}(G))$$

for any open set G in C. Applying this to $\eta - c_i \xi_i \in \kappa'(\hat{x}^{-1}(N_i))$, we have $E_2(N_i)S\eta = E_2(N_i)Sc_i \xi_i$. However $(e - c_i) \xi_i \in \kappa'(\hat{x}^{-1}(N_i))$ so that

$$E_2(N_i)Sc_i \xi_i = E_2(N_i)S\xi_i.$$

These together imply $\|E_2(N_i)S\eta\| > 2^i$ for all i, which is impossible since the $E_2(N_i)$ are all of norm 1. Thus there are only finitely many discontinuity values $\lambda_1, \ldots, \lambda_n$.

Write $\mathcal{X} = \{X; X \subset C, E_2(X)S$ is continuous}. Lemma 7.3 shows that $E_2(\bigcup \mathcal{X})S$ is continuous. We have shown that $\bigcup \mathcal{X} = C(\lambda_1, \ldots, \lambda_n)$ so that $\bigcup \mathcal{X} = C(\lambda_1, \ldots, \lambda_n)$ and $E_2(\lambda_i)S$ is discontinuous for each λ_i. Since

$$\mathcal{K}'(\mathcal{M}_B \{y^{-1}(\lambda_1, \ldots, \lambda_n)\}) = \mathcal{K}'(\mathcal{M}_B \{\text{int} y^{-1}(\lambda_1, \ldots, \lambda_n)\}),$$

this implies that, for each i, $y^{-1}(\lambda_i)$ has interior points and so $\lambda_i \in \rho(\lambda_B)$. Now if $\lambda \in \rho(\lambda_B)$ and N is an open neighborhood of λ in $\rho(\lambda_B)$ then $\mathcal{K}'(\hat{x}^{-1}(N)) = J$ and $E_2(N)S = 0$, which implies that $\lambda_i \in \sigma(L_x)$. However $\{L_x, L_y\}$ has no critical eigenvalues so that for each i, $\hat{x}^{-1}(\lambda_i)$ contains a finite number of isolated points of \mathcal{M}_A. If now c is the characteristic function of $x_1^{-1}(\lambda_i)$ we have

$$cj \in \mathcal{K}'(\hat{x}^{-1}(\lambda_i)) \quad \text{and} \quad (e-c)j \in \mathcal{K}'(\hat{x}^{-1}(\lambda_i))$$

for all $j \in J$. This shows that $E_2(\lambda_i)S = E_2(\lambda_i)SL_x$ which is continuous since L_x is continuous and has a finite dimensional range. This is a contradiction showing that there are no discontinuity values and $S = E_2(\bigcup \mathcal{X})S$ is continuous.

Suppose now that A_0, B_0 are two Banach algebras, T_1, T_2 centralisers on A_0, B_0 and S a linear map $A_0 \rightarrow B_0$ commuting with $\{T_1, T_2\}$. We wish to deduce from 7.4 that, if $\{T_1, T_2\}$ has no critical eigenvalues then S must be continuous. The task is to construct suitable algebras A, B containing A_0, B_0 as ideals and elements x, y such that, on A_0, B_0, we have $T_1 = L_x, T_2 = L_y$. In order that A, B satisfy the conditions of 7.4 it is necessary for A_0 to be regular and B_0 to be semisimple (see Theorem 2.7.2 and Corollary 2.3.7 of [12]). If this is so we can always take $B = \Gamma(B_0)$ (corollary on p. 305 of [6]). The choice for A is more delicate. Of course if T_1 is actually multiplication by an element of A_0 then, providing A_0 has hermitian involution, we take A as A_0, with identity adjoined if necessary. If A_0 is semisimple and has a hermitian involution this has a unique extension to $\Gamma(A_0)$ (Theorem 6 on p. 303 of [6]). If this involution is hermitian on $\Gamma(A_0)$ and $\Gamma(A_0)$ is regular then we take A as $\Gamma(A_0)$. The celebrated result of Williamson [14] shows that $\Gamma(A_0)$ need not inherit these properties from A_0. The following result can sometimes be used.

7.5. **Lemma.** Let $T \in \Gamma(A_0)$ and C be a subalgebra of $\Gamma(A_0)$ containing T. Let A_0 and C be regular and let A_0 have a hermitian involution which induces a hermitian involution on C. Then the subalgebra A of $\Gamma(A_0)$ containing the identity spanned by $A_0 \cup C$ is regular and has a hermitian involution.

Proof. We suppose C contains the identity of $\Gamma(A_0)$ since it can easily be added without altering the properties of C. If ϕ is a multiplicative linear functional on A its restrictions to A_0 and C are multiplicative linear functionals and so $\phi(x^*) = \phi(x)^*$ for all x in $A_0 \cup C$. Since ϕ is continuous this identity extends to A.

For the regularity we adapt the proof of Corollary 3.7.4 of [12]. Let B denote A_0 with identity adjoined. $B \cup C$ strongly separates the points of \mathcal{M}_A so that if $\phi_0 \in \mathcal{M}_A$ and F is a closed set in \mathcal{M}_A not containing ϕ_0 there are elements
Define
\[F_B = \{ \psi; \psi \in M_B, |\hat{b}_i(\psi) - \hat{b}_i(\phi_0)| \geq \varepsilon \text{ for some } i \} \]
and similarly for \(F_C \). By the regularity of \(B \) there is \(u_B \in B \subset A \) with \(\hat{u}_B = 0 \) on \(F_B \) and \(\hat{u}_B(\phi_0) \neq 0 \), and a corresponding element \(u_C \) of \(C \). The Gel'fand transform of the element \(u = u_B u_C \) of \(A \) is then not zero at \(\phi_0 \) but is zero outside \(V_{\phi_0} \).

In using Lemma 7.5 it is sometimes possible to take \(C = R(T, T^*) \), the subalgebra of \(\Gamma(A_0) \) rationally generated by \(\{ T, T^* \} \) (see [12, p. 164]). For the involution on \(R(T, T^*) \) to be hermitian it is necessary and sufficient for \(T^{*\wedge} = T^{\wedge\wedge} \).

These methods fail completely if \(T \) is a centraliser with \(T = T^* \) and yet \(\sigma(T) \) is not real.

8. Operators commuting with translations. In this section we shall consider operators \(S \) on spaces of functions on \((-\infty, +\infty) \) commuting with the translation operators \(\delta_a; f(x) \rightarrow f(x + a) \). In the space \(L_1(-\infty, +\infty) \) the translation operators are centralisers in the algebra formed by taking convolution multiplication, this algebra being a regular semisimple Banach algebra with a hermitian involution. If \(a \neq 0 \) the subalgebra \(C = R(\delta_a) \) of \(\Gamma(L_1) \) is * isomorphic with the group algebra of the integers, which is regular and has a hermitian involution. If \(a \neq 0 \), \(\sigma_p(\delta_a) \) is void so that by Theorem 7.4 and Lemma 7.5 we have

8.1. Proposition. If \(S \) is a linear map \(L_1(-\infty, +\infty) \rightarrow L_1(-\infty, +\infty) \) such that \(S\delta_a = \delta_a S \) for some \(a \neq 0 \) then \(S \) is continuous.

Notes. (i) It is easy to see what \(S \) must be like. If \(S_0 \) is any bounded linear function from \(L_1(0, |a|) \) into \(L_1(-\infty, +\infty) \) and \(e \) the characteristic function of \((0, |a|) \) then \(S = \sum_{n = -\infty}^\infty \delta_n S_0[e \cdot \delta_{-na}] \) is a bounded operator in \(L_1(-\infty, +\infty) \) commuting with \(\delta_a \) and any operator commuting with \(\delta_a \) must be of this form (with \(S_0 \) as the restriction of \(S \) to \(L_1(0, |a|) \)).

(ii) If \(S \) commutes with all the \(\delta_a \) then it certainly is continuous. Using the fact that linear combinations of the \(\delta_a \) are dense in \(\Gamma(L_1) \) with the strong operator topology (see [7, p. 607]), we see that \(S(\mu * f) = \mu * Sf \) for all \(f \in L_1 \) and bounded measures \(\mu \). In particular \(S \) is a centraliser on \(L_1 \) and thus of the form \(Sf = \nu * f \) for some measure \(\nu \) [13, p. 252].

(iii) It would be interesting to know whether \(S(\mu * f) = \mu * Sf \) for all \(f \in L_1 \), where \(\mu \) is a fixed bounded measure on \((-\infty, +\infty) \) whose Fourier-Steiltjes transform is not constant in any open interval, implies that \(S \) is continuous.

(iv) In 8.1 \(L_1 \) can be replaced by \(L_2 \) and the result follows from 3.4 since \(\delta_a \) is a unitary operator. The proof of 7.4 can be adapted to give the same result in \(L_p(-\infty, +\infty) \), the changes being relatively trivial for \(1 < p < 2 \) but requiring the introduction of distributions as Fourier transforms of some elements of \(L_p \) for \(p > 2 \).
We now give an example which shows that in a Fréchet space the situation can be quite different. We consider the space $C(\mathbb{R})$ with the topology of uniform convergence on finite intervals. For each $a \neq 0$, $\sigma_p(\delta_a) = C$ and for each $a \neq 0$ the function e^{atx} is an eigenvector of all the δ_a. The method of constructing a discontinuous commutant in §2 fails however as $\mathcal{M}(\delta_a - \lambda I) = C$ for all a, λ except $a = 0, \lambda = 1$.

We shall show that there is a discontinuous linear transformation on $C(\mathbb{R})$ which commutes with all the δ_a (it is easy to find one which commutes with a given δ_a). The subspace C_∞ of C consisting of functions f with $|f(x)| = O(e^{ik|x|})$ as $x \to \pm \infty$ for some k is closed with respect to the operators δ_a. Furthermore the equation $\sum \lambda_i \delta_{a_i} f = g$ always has a solution $g \in C_\infty$. It follows from this that linear combinations of the δ_a together with their inverses form a field K acting on C/C_∞, that is C/C_∞ is a vector space over K. The equation $* \, \text{has a unique solution } g \in C_\infty$ whenever $g \in C_\infty$. The subspace of C consisting of functions whose support is limited to the left. Thus C_∞ becomes a vector space over K. If now S_0 is a nonzero K-linear transformation from C/C_∞ to C_∞ and we define $S = S_0Q$ where Q is the canonical map $C \to C/C_\infty$ then S commutes with all the δ_a and is discontinuous since it is not zero but is zero on the dense subset C_∞ of C.

9. Operators whose ranges are sequence spaces. In this section BK space is as defined in [15, p. 29]. An operator in such a space given by a matrix is continuous [15, p. 29]. We now prove a theorem concerning operators commuting with continuous operators which is totally different from the previous results since it does not depend on dividing the domain space by dividing the spectrum of T_1, indeed the operator T_1 can be chosen to be nilpotent.

9.1. Theorem. Let E_1 be a Banach space, E_2 a BK space. Let T_1 be a continuous linear operator in E_1 and T_2 an operator in E_2 generated by a triangular matrix $[a_{ij}]$. Suppose that $\sigma_p(T_2)$ is void. Let S be a linear map from E_1 into E_2 with $ST_1 = T_2S$. Then S is continuous.

Proof. For $\xi \in E_1$

$$(ST_1 \xi)_n = (T_2S \xi)_n = a_{n,1}(S \xi)_1 + a_{n,2}(S \xi)_2 + \cdots + a_{n,n}(S \xi)_n.\tag{1}$$

So that

$$(S(T_1 - a_{n,n}I_1) \xi)_n = a_{n,1}(S \xi)_1 + \cdots + a_{n,n-1}(S \xi)_{n-1}.\tag{2}$$

From this we can show by induction on n that $(SP_n \xi)_m = 0$ for $m \leq n$ where

$$P_n = (T_1 - a_{1,1}I_1)(T_1 - a_{2,2}I_1) \cdots (T_1 - a_{n,n}I_1).$$

Suppose that, for an infinite number of integers i there exists an integer j such that the functional $\xi \to (SP_i \xi)_j$ is not continuous. Let the integers i be i_1, i_2, \ldots and the corresponding integers j be j_1, j_2, \ldots. We have $j_i > i_i$ and, by transferring to a
subsequence if necessary, we can assume \(i_{k+1} > j_i \). Now define by induction a sequence of elements \(\xi_{j_1}, \xi_{j_2}, \ldots \) of \(E_1 \), with

\[
\| \xi_k \| < 2^{-k} \left\| \prod_{m=j}^{i_k} (T_1 - a_{m, m} I) \right\|^{-1}
\]

for \(j = 1, \ldots, i_k - 1 \) and

\[
|(SP_{i_k} \xi_k)_{j_k}| > k\| \phi_{j_k} \| + \left| \sum_{i=1}^{k-1} (SP_{i_k} \xi_i)_{j_k} \right|
\]

where \(\phi_j \) is the functional \(\eta \mapsto \eta_j \) in \(E_2^* \). Put \(\eta = \sum_{i=1}^{\infty} P_{j_i} \xi_i \). Then

\[
(S\eta)_{j_k} = \sum_{i=1}^{k} (SP_{i_k} \xi_i)_{j_k} + \left[SP_{i_k} \sum_{i=k+1}^{\infty} \prod_{m=j_k+1}^{\infty} (T_1 - a_{m, m} I) \xi_i \right]_{j_k}
\]

so that \(|(S\eta)_{j_k}| > k\| \phi_{j_k} \| \), which is impossible. There is thus an integer \(p \) such that \(\xi \mapsto (SP_{i_k} \xi) \) is bounded for all \(i \geq p \) and all \(j \).

Now let \(\{x_n\} \) be a sequence in \(E_1 \) with \(x_n \to 0 \) and \(SP_p x_n \to y \) in \(E_2 \). Since \(y_j = \lim_n (SP_p x_n)_j = 0 \) for each \(j \), \(y = 0 \) and \(SP_p \) is continuous by the closed graph theorem. Finally put

\[
Q = (T_2 - a_{1, 1} I_2) \cdots (T_2 - a_{p, p} I_2).
\]

Then \(QS = SP_p \) and so \(QS \) is continuous. Since the null space of \(Q \) is void we can use 7.3 to show that \(S \) is continuous.

Notes. (i) The only possible elements of the point spectrum of an operator given by a triangular matrix are the entries on the diagonal.

(ii) If \(E_1 \) is a Fréchet space the above proof works providing we define the \(\xi_k \) such that \(\| P_{i_k} \xi_k \|_n < 2^{-k} \) for \(n = 1, \ldots, k \) where \(\| \|_1, \| \|_2, \ldots \) is a sequence of seminorms on \(E_1 \) giving the metric topology.

(iii) The result and proof can be adapted to the case in which \(E_2 \) is an FK space providing that there is a sequence \(\{b_n\} \) of positive real numbers such that \(|x_n| = o(b_n) \) as \(n \to \infty \) for all \(x \) in \(E_2 \). In this case we merely choose the \(\xi_i \) so that we get

\[
|(S\eta)_{j_k}| > b_{j_k}.
\]

(iv) Any Fréchet space \(F \) whose dual is separable in the \(w^* \) topology is isomorphic with an FK space since if \(\phi_1, \phi_2, \ldots \) is a sequence in \(F^* \) spanning it in the \(w^* \) topology then \(x \mapsto \{\phi_i(x)\} \) maps \(F \) one to one onto a sequence space which becomes an FK space if we take it with the topology induced by this map.

9.2. Corollary. Let the conditions of 9.1 be satisfied except that instead of assuming that \(\sigma_p(T_2) \) is void we assume that \(\mathcal{R}(T_1 - a_{1, i_1}^1) \) is a closed subspace of \(E_1 \) of finite codimension for each \(i \). Then \(S \) is continuous.
Proof. The proof is the same as in 9.1 except that we replace the last paragraph by the following.

The conditions now ensure that $\mathcal{R}(P_p)$ is a closed subspace of E_1 of finite codimension. Write E_1 as the direct sum of $R_1 (= \mathcal{R}(P_p))$ and a subspace R_2 of finite dimension. Since P_p maps E_1 onto R_1 continuously the closed graph theorem implies that if $x_n \to 0$ in R_1 there exists a sequence y_n in E_1 such that $y_n \to 0$ and $P_p y_n = x_n$. However SP_p is continuous so that this implies $\lim_n S x_n = \lim_n SP_p y_n = 0$ and thus S is continuous on R_1. S is also continuous on R_2 (a finite dimensional space) and hence S is continuous on $R_1 \oplus R_2 = E_1$.

9.1 and 9.2 can be combined to give

9.3. Theorem. Let the conditions of 9.1 be satisfied except that instead of assuming $\sigma_p(T_2)$ is void we assume that $\{T_1, T_2\}$ has no critical eigenvalues. Then S is continuous.

Proof. We show that SP_p is continuous as in Theorem 9.1.

Put

$$Q = (T_2 - b_1 I_2) \cdots (T_2 - b_k I_2),$$
$$P' = (T_1 - c_1 I_1) \cdots (T_1 - c_l I_1),$$

where b_1, \ldots, b_k are those elements of $a_{1,1}, \ldots, a_{p,p}$ which are not in $\sigma_p(T_2)$ (repeated the same number of times) and c_1, \ldots, c_l those which are. Then $SP_p = QSP'$ and the method in 9.1 shows that SP' is continuous. Using the method of 9.2, which is applicable by virtue of 2.3 and 3.3, we see that S is continuous.

This result is complete since 2.1 and 2.2 show that if $\{T_1, T_2\}$ has a critical eigenvalue then S can be discontinuous. The results in this paper point to the truth of the following

9.4. Conjecture. Let E_1, E_2 be two Banach spaces, T_1, T_2 continuous linear operators in E_1, E_2 and S a linear map of E_1 into E_2 with $ST_1 = T_2 S$. If $\{T_1, T_2\}$ has no critical eigenvalues then S is continuous.

References

The University,
Newcastle-upon-Tyne, England