ON HOMOGENEOUS SPACES AND REDUCTIVE SUBALGEBRAS OF SIMPLE LIE ALGEBRAS

BY

A. SAGLE AND D. J. WINTER

1. Introduction. Let G be a connected Lie group and H a closed subgroup. Then the homogeneous space $M = G/H$ is called reductive if in the Lie algebra \mathfrak{g} of G there exists a subspace \mathfrak{m} such that $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$ (subspace direct sum) and $[\mathfrak{h}, \mathfrak{m}] \subseteq \mathfrak{m}$ where \mathfrak{h} is the Lie algebra of H (see [4], [5]). In this case the pair $(\mathfrak{g}, \mathfrak{h})$ is called a reductive pair and the subspace \mathfrak{m} can be made into an anti-commutative algebra as follows. For $X, Y \in \mathfrak{m}$ let $[X, Y] = XY + \mathfrak{h}(X, Y)$ where $XY = [X, Y]_{\mathfrak{m}}$ (resp. $\mathfrak{h}(X, Y) = [X, Y]_{\mathfrak{h}}$) is the projection of $[X, Y]$ in \mathfrak{g} into \mathfrak{m} (resp. \mathfrak{h}). This algebra is related to the canonical G-invariant connection ∇ of the first kind on G/H by $\nabla_{\mathfrak{m}(Y^*)} = \frac{1}{2} XY$ where $P_0 = H \in M$ (see [5, Theorem 10.1]).

For a fixed decomposition $\mathfrak{g} = \mathfrak{m} + \mathfrak{h}$, the Lie algebra identities of \mathfrak{g} yield the following identities for \mathfrak{m} and \mathfrak{h}. For $X, Y, Z \in \mathfrak{m}$ and $U \in \mathfrak{h}$,

1. $XY = -YX$ (bilinear);
2. $\mathfrak{h}(X, Y) = -\mathfrak{h}(Y, X)$ (bilinear);
3. $[Z, \mathfrak{h}(X, Y)] + [X, \mathfrak{h}(Y, Z)] + [Y, \mathfrak{h}(Z, X)] = J(X, Y, Z) = (XY)Z + (YZ)X + (ZX)Y$;
4. $\mathfrak{h}(XY, Z) + \mathfrak{h}(YZ, X) + \mathfrak{h}(ZX, Y) = 0$;
5. $\mathfrak{h}([X, Y, U]) = \mathfrak{h}([X, U], Y) + \mathfrak{h}(X, [Y, U]);$

In particular (6) says the mappings $\text{ad}_m U : m \to m : X \to [U, X]$ are derivations of the algebra m. Using these identities, there was established in [6] a correspondence between simple algebras m and holonomy irreducible simply connected spaces G/H which are not symmetric ($m^2 = 0$ if and only if G/H is a symmetric space); for example, if G/H is riemannian, then G/H is holonomy irreducible if and only if m is a simple algebra.

In this paper, we consider pairs $(\mathfrak{g}, \mathfrak{h})$ where \mathfrak{g} is a simple Lie algebra over a field F of characteristic zero and \mathfrak{h} is either semisimple, or regular and reductive (see [2]). In each case we show that the associated m is either simple or abelian ($m^2 = 0$). This together with [6] shows in particular that if G is a simple connected Lie group and H a closed semisimple or regular reductive Lie subgroup of G such that G/H is simply connected, then either G/H is a symmetric space or G/H is holonomy irreducible. This is a reasonable account of the situation since it can be shown that

Received by the editors July 19, 1966.

(1) Research supported by NSF Grant GP-1453 and by Army Research Office, Durham (respectively).
if G/H is a holonomy irreducible pseudo-riemannian reductive space with G simple, then \mathfrak{h} is a reductive subalgebra of \mathfrak{g}.

2. The regular reductive case.

Lemma 1. Let \mathfrak{a} be a nonassociative algebra with derivation algebra $\text{Der} \, \mathfrak{a}$. Assume that \mathfrak{a} has no proper ideal stable under $\text{Der} \, \mathfrak{a}$. Then either \mathfrak{a} is simple or $\mathfrak{a}^2 = 0$.

Proof. Assume $\mathfrak{a}^2 \neq 0$ and let $\mathfrak{X}(\mathfrak{a})$ denote the associative algebra generated by the left and right multiplications of \mathfrak{a} [3, p. 290]. Let R be the radical of $\mathfrak{X}(\mathfrak{a})$. Then Ra is an ideal of \mathfrak{a} since $\mathfrak{X}(\mathfrak{a})(Ra) \subseteq (\mathfrak{X}(\mathfrak{a})R)a \subseteq Ra$. If $D \in \text{Der} \, \mathfrak{a}$, then $[D, \mathfrak{X}(\mathfrak{a})] \subseteq \mathfrak{X}(\mathfrak{a})$ since $ad_{\text{Hom}(\mathfrak{a}, \mathfrak{a})} D$ stabilizes the set of right and left multiplications (e.g., $[D, L(A)] = L([D, A])$ where $L(B)$ denotes left multiplication by B in \mathfrak{a}). Thus $ad_{\text{Hom}(\mathfrak{a}, \mathfrak{a})} D$ is a derivation of $\mathfrak{X}(\mathfrak{a})$ and it follows that $[D, R] \subseteq R$ [3, p. 30, exercise 22]. Thus $D(Ra) \subseteq [D, R]a + R(Da) \subseteq Ra$. Thus Ra is a $\text{Der} \, \mathfrak{a}$-stable ideal of \mathfrak{a}. By assumption, we must have $Ra = \mathfrak{a}$ or $Ra = 0$. If $Ra = \mathfrak{a}$, then for some i, $0 = Ra = R^{-1}a = \ldots = Ra = a$ and $a = 0$. Thus we may assume that $Ra = 0$. Then $R = 0$ and $\mathfrak{X}(\mathfrak{a})$ is completely reducible on \mathfrak{a}. \mathfrak{a}^2 is clearly $\text{Der} \, \mathfrak{a}$-stable. Assuming that $\mathfrak{a}^2 \neq 0$, we must have $\mathfrak{a}^2 = \mathfrak{a}$ by hypothesis. We claim that $\mathfrak{a}^2 = \mathfrak{a}$ implies that \mathfrak{a} is simple. For if \mathfrak{b} were a proper ideal of \mathfrak{a}, then \mathfrak{b} would be $\mathfrak{X}(\mathfrak{a})$-stable and hence $\mathfrak{a} = \mathfrak{b} \oplus \mathfrak{b}'$ for some $\mathfrak{X}(\mathfrak{a})$-stable \mathfrak{b}'. This \mathfrak{b}' would be an ideal and $\mathfrak{a} = \mathfrak{a}^2 = \mathfrak{b}^2 + (\mathfrak{b}')^2$ shows that $\mathfrak{b}^2 = 0$. But then $\mathfrak{b} = \mathfrak{b}^2$ would be $\text{Der} \, \mathfrak{a}$-stable since for B_1, B_2 in \mathfrak{b}, $D(B_1B_2) = (DB_1)B_2 + B_1(DB_2)$ e \mathfrak{b}. Thus \mathfrak{a} is simple.

We now consider reductive pairs $(\mathfrak{g}, \mathfrak{h})$. Thus let \mathfrak{g} be a Lie algebra, \mathfrak{h} a Lie subalgebra of \mathfrak{g}, \mathfrak{m} a complementary subspace of \mathfrak{h} in \mathfrak{g} such that $[\mathfrak{m}, \mathfrak{h}] \subseteq \mathfrak{m}$. For $X, Y \in \mathfrak{m}$ we define XY in \mathfrak{m} and $\mathfrak{h}(X, Y)$ in \mathfrak{h} by requiring that $[XY] = XY + \mathfrak{h}(X, Y)$. We regard \mathfrak{m} as a nonassociative algebra with respect to the product XY. Then \mathfrak{m} is clearly anti-commutative and $ad_{\mathfrak{m}} U$ is a derivation of \mathfrak{m} for $U \in \mathfrak{h}$ (by (6)).

Lemma 2. Let \mathfrak{m} be an $ad_{\mathfrak{h}}$-stable ideal of \mathfrak{m}. Let $\mathfrak{q} = \mathfrak{m} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n})$. If $[\mathfrak{n}, \mathfrak{n}'] \subseteq \mathfrak{q}$ for some complementary subspace \mathfrak{n}' of \mathfrak{n} in \mathfrak{m}, then \mathfrak{q} is an ideal of \mathfrak{g}.

Proof. $[\mathfrak{q}, \mathfrak{n}] \subseteq [\mathfrak{n}, \mathfrak{n}] + [\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}] \subseteq \mathfrak{m} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}) + \mathfrak{n}$ by (3) since \mathfrak{n} is ad \mathfrak{h}-stable. Thus $[\mathfrak{q}, \mathfrak{n}] \subseteq \mathfrak{q}$. And $[\mathfrak{q}, \mathfrak{h}] \subseteq \mathfrak{q}$ since \mathfrak{n} is ad \mathfrak{h}-stable and $\mathfrak{q} = \mathfrak{m} + [\mathfrak{n}, \mathfrak{n}]$. It remains to show that $[\mathfrak{q}, \mathfrak{n}'] \subseteq \mathfrak{q}$. But we have $[\mathfrak{q}, \mathfrak{n}'] \subseteq \mathfrak{m} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}') + [\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}']$, $[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}'] \subseteq [\mathfrak{m}, \mathfrak{n}'] + [[\mathfrak{n}, \mathfrak{n}], \mathfrak{n}'] \subseteq [\mathfrak{n}, \mathfrak{n}'] + [\mathfrak{n}, [\mathfrak{n}, \mathfrak{n}']]$, $\mathfrak{h}(\mathfrak{n}, \mathfrak{n}') \subseteq \mathfrak{m} + [\mathfrak{n}, \mathfrak{n}']$. But since $[\mathfrak{n}, \mathfrak{n}'] \subseteq \mathfrak{q}$ by hypothesis, \mathfrak{q} contains $[\mathfrak{h}(\mathfrak{n}, \mathfrak{n}), \mathfrak{n}']$ (using (3)) and $\mathfrak{h}(\mathfrak{n}, \mathfrak{n}')$. Since $\mathfrak{m} \subseteq \mathfrak{n} (\mathfrak{n}$ is an ideal of \mathfrak{m}), $[\mathfrak{q}, \mathfrak{n}'] \subseteq \mathfrak{q}$. Thus \mathfrak{q} is an ideal of \mathfrak{g}.

Lemma 3. Suppose that the Killing form $B(\ , \)$ of \mathfrak{g} is nondegenerate and that $B(\mathfrak{m}, \mathfrak{h}) = 0$. Then $B(\ , \)|\mathfrak{m}$ is nondegenerate and invariant, i.e., $B(XY, Z) = B(X, YZ)$. Moreover every $ad_{\mathfrak{h}}$-stable ideal \mathfrak{n} of \mathfrak{m} satisfies $[\mathfrak{n}, \mathfrak{n}'] = 0$ where $\mathfrak{n}' = \{X \in \mathfrak{m} \mid B(X, \mathfrak{n}) = 0\}$.
Proof. For $X, Y, Z \in m$ we have:

$$B(XY, Z) = B([X, Y] - \h(X, Y), Z) = B([X, Y], Z) = B(X, [Y, Z]) = B(X, YZ).$$

Now $B(n^\perp, n) = 0$ implies that $0 = B(n^\perp, nm) = B(nn^\perp, m)$. And $B(m, \h) = 0$ implies that $B(nm^\perp, \h) = 0$. Thus $B(nm^\perp, g) = 0$ and $nm^\perp = 0$. Consequently $[n, n^\perp] = \h(n, n^\perp) \subseteq \h$ and $B([n, n^\perp], m) = 0$. But we also have $B([n, n^\perp], \h) = B(n^\perp, [\h, n]) = B(n^\perp, n) = 0$. Thus $B([n, n^\perp], g) = 0$ and $0 = [n, n^\perp] = \h(n, n^\perp)$.

Theorem 1. Let g be a split simple Lie algebra. Let \h be a reductive subalgebra of g which is normalized by a split Cartan subalgebra c of g (i.e., \h is reductive and regular [2]). Then \h has an $\text{ad}(c + \h)$-stable complement m. Such an m is either simple or abelian ($m^2 = 0$).

Proof. We first show that $c + \h$ is reductive. Letting $g = g_0 + \sum g_{\alpha}$ be the root space decomposition of g, it suffices to show that for $\alpha \neq 0$, $g_\alpha \subseteq c + \h$ implies $g_{-\alpha} \subseteq c + \h$ [7, p. 669]. Since $[c, \h] \subseteq \h$ we have $[c, b] \subseteq b$ where b is the center of \h. Thus $c + b$ is solvable. Thus $\text{ad}(c + b)$ is triangulizable and $0 = [\text{ad} c, \text{ad} b] = \text{ad}[c, b]$ since $\text{ad}[c, b] \subseteq \text{ad} b$ and $\text{ad} b$ consists of semisimple transformations. Thus $[c, b] = 0$ and $b \subseteq c = g_0$. Now $\h = b \oplus \h(1)$ with $\h(1)$ semisimple, since \h is reductive. Let α be a nonzero root such that $g_\alpha \subseteq c + \h$. Then since $\h(1)$ is $\text{ad} c$-stable and $c + \h = g_0 + b + \h(1) = g_0 + \h(1)$, we have $g_{-\alpha} \subseteq \h(1)$. Now the restriction of the Killing form $B(,)$ of g to $\h(1)$ is nondegenerate since it is the trace form of a faithful representation of the semisimple Lie algebra $\h(1)$ (see [3, p. 69]). Thus $B(gh, \h(1)) = 0$. Since $B(gh, \h(1)) = 0$ for $\alpha + \beta \neq 0$, it follows $g_{-\alpha} \subseteq \h(1)$. Thus $g_{-\alpha} \subseteq c + \h$ implies $g_{-\alpha} \subseteq c + \h$ and $c + \h$ is reductive.

It follows that \h has a complement m stable under $\text{ad}(c + \h)$. Any complement m is the sum of $m \cap g_0$ and those root spaces g_{α} not occurring in \h. In particular, $g_{-\alpha} \subseteq m$ implies $g_{-\alpha} \subseteq m$.

We now show that such an m is either simple or abelian. Assume that $m^2 \neq 0$ and m not simple. Then by Lemma 1, m has a proper $\text{Der} m$-stable ideal. Since m is $\text{ad}(c + \h)$-stable, $\text{ad}(c + \h)$ consists of derivations of m. Thus m has a proper ideal n stable under $\text{ad}(c + \h)$.

Let σ be an automorphism of g such that $\sigma|c = -id_c$ and $g_{-\alpha} = g_{-\alpha}$ for all α (see [3, p. 127]). Then the above discussion shows that m and \h are σ-stable. It follows that $(XY)^\sigma = X^\sigma Y^\sigma$ and $(\h(X, Y))^{\sigma} = \h(X^\sigma, Y^\sigma)$. Thus $\sigma|m$ is an automorphism of m and n^σ is an ideal of m. Since $[n^\sigma, c + \h] = [n^\sigma, (c + \h)^0] = [n, c + \h]^0 \subseteq n^\sigma$, n^σ is also $\text{ad}(c + \h)$-stable.

Suppose that one of the ideals $n \cap n^\sigma$, $n + n^\sigma$ is proper in m. Call it ν. Then ν is the sum of $\nu \cap g_0$ and root spaces g_α. Moreover $g_{-\alpha} \subseteq \nu$ implies $g_{-\alpha} \subseteq \nu$. It follows that $m = m \cap g_0 + \nu + n^\perp$ where $\nu^\perp = \{X \in m \mid B(X, \nu) = 0\}$ (thus $g_{-\alpha} \subseteq m - g_0$ and $g_{-\alpha} \subseteq \nu$ implies $g_{-\alpha} \subseteq \nu$ which implies $B(g_{-\alpha}, \nu) = 0$). We use this to show that $g = \nu + \h(\nu, \nu)$ is an ideal of g. By Lemma 2 it suffices to show that $[\nu, \nu'] \subseteq \nu$ where $\nu' = \nu^\perp + m \cap g_0$. But $[\nu, m \cap g_0] \subseteq [\nu, c] \subseteq \nu$. Thus it suffices to show that $[\nu, \nu^\perp]$.

1967] HOMOGENEOUS SPACES AND REDUCTIVE SUBALGEBRAS 145

\[B([p, p], c + h) = B(p, c + h) = B(p, p) = 0 \]
Thus \(h(v, v) \in \mathfrak{g} \) and \(h(p, p) = 0 \). Thus \([p, p] = p^2 \leq q \) and \(q \)

is an ideal of \(g \). Thus \(q = g \) and \(n \) cannot be proper in \(m \), a contradiction.

Thus we have \(n \cap n^2 = 0 \) and \(n + n^2 = m \). Thus \(n \cap g_0 = (n \cap g_0)^2 = 0 \) (since \(\sigma|g_0 = -id_{g_0} \)). Thus \(m \cap g_0 = n \cap g_0 + (n \cap g_0)^2 = 0 \). It follows that \(B(m, m) = 0 \) (e.g., \(m = \sum_{\alpha \in S} g_\alpha \) for some set \(S \) of nonzero roots, and \(\alpha \in S \) implies \(-\alpha \in S \) which implies \(g_\alpha \not= g_\alpha \) and therefore \(B(g_\alpha, h) = 0 \). Also \(B(n, n) = 0 \) (e.g., \(n = \sum_{T \in T} g_\alpha \) for some set \(T \) of nonzero roots, and \(\alpha \in T \) implies \(-\alpha \in T \) which implies \(B(g_\alpha, n) = 0 \)).

It follows from Lemma 3 that \([n, n] = n \oplus b(n, n) = 0 \). Thus \(n^2 = 0 \). Finally \(m^2 = (n + n^2)^2 = n^2 + n^3 + (n^2)^2 \leq 0 + n \cap n^2 + 0 = 0 \), a contradiction.

3. The semisimple case. We now consider the reductive pair \((g, h)\) where \(g \) is a simple Lie algebra and \(h \) is a semisimple Lie subalgebra. We note that the Killing form \(B(\ , \) \) of \(g \) restricted to \(h \) is nondegenerate. For if \(U, V \in h \), then \(B(U, V) = \text{tr} \, \text{ad}_h \, U \, \text{ad}_h \, V \) is the trace form of the representation \(\text{ad}_h \) in \(g \), and is nondegenerate by Cartan's criterion [3, p. 69]. (Note that \(\text{ad}_h \, U = 0 \) implies \(UF \) is a one-dimensional ideal in the simple algebra \(g \) so that \(U = 0 \).) Thus if \(h^1 = \{ X \in g \mid B(X, h) = 0 \} \), then \(h \cap h^1 = 0 \) and therefore \(g = h^1 + h \). And \(B([h^1, h], h) = B(h^1, [h, h]) = 0 \) so that for \(m = h^1 \), \((g, h) \) is a reductive pair with (fixed) decomposition \(g = m \oplus h \). Note that since \(m = h^1 \), the Killing form \(B \), restricted to \(m \), is a nondegenerate invariant form, i.e., \(B(XY, Z) = B(X, YZ) \).

Theorem 2. Let \(g \) be a simple Lie algebra and \(h \) a semisimple subalgebra. Then \((g, h) \) is a reductive pair with \(m = h^1 \). Furthermore \(m^2 = 0 \) or \(m \) is simple.

Proof. Assume \(m^2 \neq 0 \). Then we have from Lemma 1 that \(m \) has a minimal proper ad \(h \)-stable ideal \(n \). Then since \(B \) is a nondegenerate invariant form on \(m \) and \(B([XU], Y) = B(X, [UY]) \) for \(X, Y \in m, U \in h \), we have \(n^2 = \{ X \in m \mid B(X, n) = 0 \} \) is an ad \(h \)-stable ideal of \(m \). Thus \(n \cap n^2 \) is an ad \(h \)-stable ideal of \(m \); and since \(n \) is minimal, either \(n \cap n^2 = 0 \) or \(n \cap n^2 = n \).

In case \(n \cap n^2 = 0 \) we have \(m = n \oplus n^2 \). And we know from Lemma 3 that \([n, n^2] = 0\). Thus \(q = n \oplus h(n, n) \) is a proper ideal of \(g \) by Lemma 2. This contradiction shows we must have \(n \cap n^2 = n \).

In the case \(n \cap n^2 = n \) we can find an ad \(h \)-stable complement, \(n' \) (since ad \(h \) is semisimple and therefore completely reducible); and we write \(m = n \oplus n' \). Thus since \(B(n, n) = 0 \), to show that \(n = 0 \) it suffices to show \(B(n, n') = 0 \).

To find a formula for \(B(X, Y) \) with \(X, Y \in m \), define \(\epsilon(X) \) and \(\delta(X) \) by
\[
\epsilon(X) : m \to h; \quad Y \to \delta(X)(Y) = \epsilon(X)(Y), \\
\delta(X) : h \to m; \quad U \to [X, U] = \delta(X)(U),
\]
where \(U \in h \). Using these maps we have for any \(Z, X \in m, U \in h \) that
\[
(\text{ad}_h Z)(X) = [Z, X] = ZX + h(Z, X) = (L(Z) + \epsilon(Z))(X), \\
(\text{ad}_h Z)(U) = [Z, U] = \delta(Z)(U)
\]
and therefore

\[\text{ad}_g Z = \begin{pmatrix} L(Z) & e(Z) \\ \delta(Z) & 0 \end{pmatrix}. \]

From this, note that since \(g \) is simple \(0 = \text{tr} \, \text{ad}_g Z = \text{tr} \, L(Z) \). Also since \(\mathfrak{h} = [\mathfrak{h}, \mathfrak{h}] \) is semisimple, and since \(\mathfrak{h} \to \text{ad}_m \mathfrak{h}: U \to \text{ad}_m U \) and \(\mathfrak{h} \to \text{ad}_g \mathfrak{h}: U \to \text{ad}_g U \) are representations of \(\mathfrak{h} \), we have \(\text{tr} \, \text{ad}_m U = \text{tr} \, \text{ad}_g U = 0 \) for all \(U \in \mathfrak{h} \).

Next for \(X, Y \in m \) define the linear transformation \(\sigma(X, Y): m \to m \) by \(\sigma(X, Y) = \delta(X)e(Y) \), that is, \(\sigma(X, Y)Z = [X, \delta(Y, Z)] (=[\mathfrak{h}(Z, Y), X]) \). From (3) we have the identity

\[\text{ad}_m \mathfrak{h}(X, Y) - \sigma(X, Y) + \sigma(Y, X) = [L(X), L(Y)] - L(XY) \]

and therefore \(\text{tr} \, \sigma(X, Y) = \text{tr} \, \sigma(Y, X) \). From this and the matrix for \(\text{ad}_g Z \) we obtain for \(X, Y \in m \) that

\[B(X, Y) = \text{tr} \, \text{ad}_g X \text{ad}_g Y \]

\[= \text{tr} \, L(X)L(Y) + \text{tr} \, e(X)\delta(Y) + \text{tr} \, \delta(X)e(Y) \]

\[= \text{tr} \, L(X)L(Y) + \text{tr} \, \delta(Y)e(X) + \text{tr} \, \delta(X)e(Y) \]

\[= \text{tr} \, L(X)L(Y) + \text{tr} \, \sigma(Y, X) + \text{tr} \, \sigma(X, Y) \]

\[= \text{tr} \, L(X)L(Y) + 2 \text{tr} \, \sigma(X, Y), \]

using for the third equality that if \(S \in \text{Hom}(V, W) \) and \(T \in \text{Hom}(W, V) \) for vector spaces \(V \) and \(W \), then \(\text{tr} \, ST = \text{tr} \, TS \).

Now recall that in the decomposition \(m = n + n' \) we must show \(B(n, n') = 0 \). Thus for \(X \in n, \ Y \in n' \) we have (from the fact that \(n \) is an ideal and \(nn = 0 \)) the matrices

\[L(X) = \begin{pmatrix} 0 & 0 \\ X_{21} & 0 \end{pmatrix} \quad \text{and} \quad L(Y) = \begin{pmatrix} Y_{11} & 0 \\ Y_{21} & Y_{22} \end{pmatrix} \]

and therefore \(\text{tr} \, L(X)L(Y) = 0 \) and \(B(X, Y) = 2 \text{tr} \, \sigma(X, Y) \).

To find the matrix for \(\sigma(X, Y) \) (with \(X \in n, \ Y \in n' \)) let \(Z \in n, \ Z' \in n' \). Then

\[\sigma(X, Y)Z = [\mathfrak{h}(Z, Y), X] \in n, \]

\[\sigma(X, Y)Z' = [\mathfrak{h}(Z', Y), X] \in n. \]

Therefore

\[\sigma(X, Y) = \begin{pmatrix} \sigma_{11} & 0 \\ \sigma_{21} & 0 \end{pmatrix} \]

and \(\text{tr} \, \sigma(X, Y) = \text{tr} \, \sigma_{11} = \text{tr}_n \sigma(X, Y) \). To find the action of \(\sigma(X, Y) \) on \(n \) again let \(Z \in n \). Then since \(n \) is an ideal, \(nn = 0 \) and \(\mathfrak{h}(n, n) = 0 \), we have from (3) that

\[0 = J(Z, X, Y) = [Z, \mathfrak{h}(X, Y)] + [X, \mathfrak{h}(Y, Z)] \]

\[= [-\text{ad}_n \mathfrak{h}(X, Y) + \sigma(X, Y)]Z. \]

Therefore on \(n \) we have \(\sigma(X, Y) = \text{ad}_n \mathfrak{h}(X, Y) \) and since \(U \to \text{ad}_n U \) is a representation of the semisimple Lie algebra \(\mathfrak{h} \), \(0 = \text{tr} \, \text{ad}_n \mathfrak{h}(X, Y) = \text{tr}_n \sigma(X, Y) \). Thus \(B(n, n') = 0 \) and \(m \) is simple, a contradiction. Thus either \(m^2 = 0 \) or \(m \) is simple.
4. Remarks. (i) The above discussion for \(\mathfrak{h} \) semisimple holds for \(\mathfrak{h} \) reductive in \(\mathfrak{g} \) except for the assertion that \(\text{tr} \text{ ad}_n \mathfrak{h}(X, Y) = 0 \) and its consequences. The authors do not know whether the theorem holds for all reductive \(\mathfrak{h} \).

(ii) If \(\mathfrak{h} \) is the zero-space of a derivation of \(\mathfrak{g} \) or the one-space of an automorphism of \(\mathfrak{g} \), then \(\mathfrak{h} \) is reductive and contains a regular element of \(\mathfrak{g} \) [1]. Thus if \(\mathfrak{g} \) is simple and the underlying field algebraically closed, the associated \(\mathfrak{m} \) is simple or abelian by Theorem 1.

(iii) It would be of value to determine all pairs \((\mathfrak{g}, \mathfrak{h}) \) with \(\mathfrak{g} \) semisimple for which an associated \(\mathfrak{m} \) is simple. We now give an example of one nontrivial such pair \((\mathfrak{g}, \mathfrak{h}) \) where \(\mathfrak{g} \) is not simple. Thus let \(\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \) (direct) where the \(\mathfrak{g}_i \) \((i=1, 2)\) are real compact simple Lie algebras. Suppose that \(\mathfrak{b} \) is a simple subalgebra of \(\mathfrak{g}_1 \), \(\mathfrak{b}' \) a simple subalgebra of \(\mathfrak{g}_2 \), \(B \to B' \) an isomorphism from \(\mathfrak{b} \) onto \(\mathfrak{b}' \). Let \(\mathfrak{h} = \{B + B' \mid B \in \mathfrak{b} \} \) and \(\mathfrak{m} = \mathfrak{h}^\perp \). Then \(\mathfrak{g}_1, \mathfrak{g}_2, \mathfrak{b}, \text{ and } \mathfrak{b}' \) can easily be chosen such that \(\mathfrak{m}^2 \neq 0 \). We claim that for any such choice, \(\mathfrak{m} \) is simple. By Lemma 1, it suffices to show that \(\mathfrak{m} \) has no proper \(\text{ad} \mathfrak{h} \)-stable ideal. If \(\mathfrak{n} \) were such an ideal, then since the Killing form is negative definite on \(\mathfrak{g} \), \(\mathfrak{m} = \mathfrak{n} \oplus \mathfrak{n}^\perp \). It is now clear that \(\mathfrak{n} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}) \) is an ideal of \(\mathfrak{g} \) by Lemma 2, since \([\mathfrak{n}, \mathfrak{n}^\perp] = 0 \) by Lemma 3. But then \(\mathfrak{n} + \mathfrak{h}(\mathfrak{n}, \mathfrak{n}) = \mathfrak{g}_1 \) or \(\mathfrak{g}_2 \). But by construction, \(\mathfrak{h} \cap \mathfrak{g}_1 = \mathfrak{h} \cap \mathfrak{g}_2 = 0 \). Thus \(\mathfrak{n} = \mathfrak{g}_1 \) or \(\mathfrak{g}_2 \). This is impossible since \(B(\mathfrak{n}, \mathfrak{h}) = 0 \) whereas \(B(\mathfrak{g}_i, \mathfrak{h}) \neq 0 \) for \(i = 1, 2 \).

Bibliography

University of Minnesota,
Minneapolis, Minnesota
Yale University,
New Haven, Connecticut