GENERIC SPLITTING FIELDS OF COMPOSITION ALGEBRAS

BY

J. C. FERRAR

Witt [7] proved that one can assign to each generalized quaternion algebra \mathcal{A} over a field K, a field $F(\mathcal{A})$ containing K which splits \mathcal{A} and has the property: if $F(\mathcal{A})$ splits a quaternion algebra \mathcal{B} over K then either \mathcal{B} is split over K or \mathcal{B} is isomorphic to \mathcal{A}. Amitsur [2] has generalized this result to obtain generic splitting fields for all central simple associative algebras of dimension greater than one over K (cf. Roquette [6]). In this paper we generalize the result of Witt in another direction, studying splitting fields of composition algebras of dimension greater than one over K of characteristic other than two. We assign to each such algebra \mathcal{C}, a field $F(\mathcal{C})$ containing K, prove that $F(\mathcal{C})$ is an invariant under isomorphisms, and prove

Theorem 2. Let \mathcal{C} be a composition algebra of dimension greater than one over K. Then

1. $\mathcal{C}_{F(\mathcal{C})}$ is split.
2. If $F \supseteq K$ is any field, then \mathcal{C}_F is split if and only if there is a K-place of $F(\mathcal{C})$ into $F \cup \infty$.
3. If \mathcal{C}' is any composition algebra over K such that $\mathcal{C}_{F(\mathcal{C})}$ is split, then either \mathcal{C}' is split or \mathcal{C} is isomorphic to a subalgebra of \mathcal{C}'.

Thus we generalize the result of Witt to quadratic and generalized Cayley algebras.

1. **Composition algebras.** A composition algebra \mathcal{C} over a field K is an algebra over K, with identity 1, together with a nondegenerate quadratic form N such that $N(xy) = N(x)N(y)$ for any x, y in \mathcal{C}. The structure of such algebras has been completely determined and we refer to [1] or [4] for proofs of the following results.

1. A composition algebra \mathcal{C} is alternative with involution $\tau: x = a1 + u$, for u orthogonal to 1 with respect to the nondegenerate, symmetric, bilinear form $N(x, y) = \frac{1}{2}(N(x+y) - N(x) - N(y))$. Each $x \in \mathcal{C}$ can be uniquely represented in the form $x = a1 + u$, $\alpha \in K$, $N(u, 1) = 0$ and one has $N(x)1 = (\alpha 1 + u)(\alpha 1 - u)$.

If V is a subspace of \mathcal{C}, we shall denote by V^\perp the orthogonal complement of V in \mathcal{C} with respect to $N(x, y)$.

2. If \mathcal{B} is a composition subalgebra of \mathcal{C} (necessarily having associated quadratic form the restriction of N to \mathcal{B}), and $u \in \mathcal{B}^\perp \subseteq C$, $N(u) \neq 0$, then $\mathcal{B} + Bu$,
\(\mathcal{B}u = \{ bu \mid b \in \mathcal{B} \} \), is a composition subalgebra of \(\mathcal{C} \) with structure determined completely by the structure of \(\mathcal{B} \) and the element \(N(u) \in K \). \(\mathcal{B}u \) is orthogonal to \(\mathcal{B} \) with respect to the nondegenerate form \(N(x, y) \) and hence \(\dim (\mathcal{B} + \mathcal{B}u) = 2 \dim \mathcal{B} \).

3. Every composition algebra \(\mathcal{C} \) has dimension 1, 2, 4, or 8 over \(K \) and possesses composition subalgebras of dimension \(2^e \) for all \(e \) such that \(2^e \leq \dim \mathcal{C} \).

4. If \(\varphi \) is an isomorphism from a composition algebra \(\mathcal{C} \) with quadratic form \(N \) onto a composition algebra \(\mathcal{C}' \) with quadratic form \(N' \), then \(N'(\varphi x) = N(x) \) for all \(x \in \mathcal{C} \).

5. A composition algebra is called split if there is \(u \in \mathcal{C} \), \(u \neq 0 \), such that \(N(u) = 0 \). If \(\mathcal{C} \) is split, the form \(N(x, y) \) has maximal Witt index. If \(\mathcal{C} \) is not split, \(\mathcal{C} \) is a division algebra.

6. If \(F \supseteq K \) is a field, the algebra \(\mathcal{C}_F = \mathcal{C} \otimes_K F \) is again a composition algebra (over \(F \)) with associated quadratic form \(N_F \), the natural extension of \(N \) to \(\mathcal{C}_F \).

For convenience we shall denote by \(\lambda x \), \(\lambda \in F \), \(x \in \mathcal{C} \), the element \(\lambda \otimes x \) of \(\mathcal{C}_F \).

II. Construction of the generic splitting field. We assume now that \(\mathcal{C} \) is an arbitrary composition algebra of dimension \(2^k \), \(k > 0 \), over \(K \) of characteristic other than two. Let \(u_i \), \(1 \leq i \leq m+1 \), \(m = 2^k - 1 \), be elements of \(\mathcal{C} \) such that \(N(u_i) \neq 0 \) for all \(i \), \(N(u_i, u_j) = 0 \) for \(i \neq j \), and \(u_i \), \(1 \leq i \leq m \), span a composition algebra \(\mathcal{B} \subseteq \mathcal{C} \). We take \(L(\mathcal{C}) \) to be the rational function field in \(m-1 \) indeterminates \(x_2, \ldots, x_m \) over \(K \), assuming as a convention that this will be \(K \) if \(m = 1 \), and define

\[
\lambda(u) = N(u_1)^{-1}N\left(\sum_{i=2}^{m} u_i x_i + u_{m+1}\right) = N(u_1)^{-1}\left(\sum_{i=2}^{m} x_i^2 N(u_i) + N(u_{m+1})\right)
\]

in \(L(\mathcal{C}) \).

The generic splitting field \(F(\mathcal{C}) \) is defined as follows: \(F(\mathcal{C}) = L(\mathcal{C}) \) if \(\mathcal{C} \) is split; \(F(\mathcal{C}) = L(\mathcal{C})((\lambda(u))^{1/2}) \) if \(\mathcal{C} \) is not split.

We show now that \(F(\mathcal{C}) \) is dependent, up to isomorphism, only on \(\mathcal{C} \), and not on the choice of the \(u_i \), proving first

Lemma 1. Let \(\mathcal{C} \) be a composition division algebra over \(K \), \(u_i, v_i, 1 \leq i \leq m+1 \) sets of elements of \(\mathcal{C} \) satisfying the conditions above and such that \(u_i \), \(1 \leq i \leq m \), and \(v_i \), \(1 \leq i \leq m \), span the same subalgebra \(\mathcal{B} \) of \(\mathcal{C} \). Then \(L(\mathcal{C})((-\lambda(u))^{1/2}) \) is isomorphic to \(L(\mathcal{C})((-\lambda(v))^{1/2}) \).

Proof. By (2), \(\mathcal{C} = \mathcal{B} + \mathcal{B}u_{m+1} \) and \(\mathcal{B}^+ = \mathcal{B}u_{m+1} \). Thus there is \(b \in \mathcal{B} \) such that \(v_{m+1} = bu_{m+1}, \ N(b) \neq 0 \). Since \(bu_i, 1 \leq i \leq m \) span \(\mathcal{B} \),

\[
\alpha v_1 + \sum_{i=2}^{m} x_i v_i + v_{m+1} = \sum_{i=1}^{m} \xi_i (bu_i) + bu_{m+1} = b\left(\sum_{i=1}^{m} \xi_i u_i + u_{m+1}\right)
\]

for any \(\alpha \in L(\mathcal{C})((-\lambda(v))^{1/2}) \), where \(\xi_i, 1 \leq i \leq m \), are \(K \)-linear combinations of \(\alpha \) and the \(x_i, 2 \leq i \leq m \), and conversely. For \(\alpha = (-\lambda(v))^{1/2} \),

\[
0 = N\left(\alpha v_1 + \sum_{i=2}^{m} x_i v_i + v_{m+1}\right) = N(b)N\left(\sum_{i=1}^{m} \xi_i u_i + u_{m+1}\right)
\]
and, since $N(b) \neq 0$, \(\xi_i^2 = -N(u_i)^{-1}(\sum \xi_j^2N(u_i_i) + N(u_{m+1})) \). Since the \(\xi_i \) generate \(L(\mathcal{C})((-\lambda(v))^{1/2}) \) over \(K \), it follows that there is an isomorphism of \(L(\mathcal{C})((-\lambda(v))^{1/2}) \) onto \(L(\mathcal{C})((-\lambda(v))^{1/2}) \) mapping \(x_i \) onto \(\xi_i \), \(2 \leq i \leq m \), and \((-\lambda(u))^{1/2} \) onto \(\xi_1 \).

We shall obtain our results on the independence of \(F(\mathcal{C}) \) from the choice of the \(u_i \), and on the invariance of \(F(\mathcal{C}) \) under isomorphism of \(\mathcal{C} \), as corollaries to

Theorem 1. Let \(u_i, v_i, 1 \leq i \leq m+1 \) be elements of a division composition algebra \(\mathcal{C} \), satisfying the criteria given for the \(u_i \) in defining \(F(\mathcal{C}) \). Let \(u_i, 1 \leq i \leq m \), span the subalgebra \(\mathcal{B} \) and let \(v_i, 1 \leq i \leq m \), span the subalgebra \(\mathcal{B}' \). Then \(L(\mathcal{C})((-\lambda(u))^{1/2}) \) is isomorphic to \(L(\mathcal{C})((-\lambda(v))^{1/2}) \).

Proof. We consider the separate cases \(m=1, 2, \) or \(4 \).

Case 1. \(m=1 \). The only one-dimensional composition subalgebra of \(\mathcal{C} \) is \(K1 \), hence \(\mathcal{B} = \mathcal{B}' \) and the result follows from Lemma 1.

Case 2. \(m=2 \). If \(\mathcal{B} = \mathcal{B}' \), Lemma 1 again yields the desired result. Thus we may assume \(\mathcal{B} \cap \mathcal{B}' = K1 \).

If \(1, u \) are an orthogonal basis for \(\mathcal{B}, v \in \mathcal{B}^1 \), then \(1, v \) also span a subalgebra, say \(\mathcal{D} \), of \(\mathcal{C} \). Taking \(u_1 = 1, u_2 = u, u_3 = v, u'_1 = 1, u'_2 = v, u'_3 = u \), we see easily that since \(\lambda(u) = N(u)x_1^2 + N(v), \lambda(u') = N(v)x_1^2 + N(u) \), the mapping taking \(x_1 \) onto \(x_1^{-1} \), \((-\lambda(u))^{1/2} \) onto \(x_1^{-1}((-\lambda(u'))^{1/2} \) determines an isomorphism of \(L(\mathcal{C})((-\lambda(u))^{1/2}) \) onto \(L(\mathcal{C})((-\lambda(u'))^{1/2}) \).

Since \(\mathcal{B}^2, (\mathcal{B}')^2 \) are two-dimensional subspaces of the three dimensional space \((K1)^4 \), there is \(z \in \mathcal{B}^2 \cap (\mathcal{B}')^2, z \neq 0 \). By the above observation and Lemma 1, \(L(\mathcal{C})((-\lambda(u))^{1/2}) \), \(L(\mathcal{C})((-\lambda(u'))^{1/2}) \) are isomorphic to fields \(L(\mathcal{C})((-\lambda(u'))^{1/2}) \), \(L(\mathcal{C})((-\lambda(u'))^{1/2}) \) respectively, where \(u'_1 = 1 = v'_1, u'_2 = z = v'_2 \). By Lemma 1 the latter fields are isomorphic and the result follows.

Case 3. \(m=4 \). Again, if \(\mathcal{B} = \mathcal{B}' \) we are finished. To complete the proof we shall show the result follows in the event \(\dim (\mathcal{B} \cap \mathcal{B}') = 2 \), and shall give a method of reducing the case \(\mathcal{B} \cap \mathcal{B}' = K1 \) to the case \(\dim (\mathcal{B} \cap \mathcal{B}') = 2 \).

We show first that if \(\mathcal{D} \) is a composition subalgebra of \(\mathcal{B} \) of dimension 2 with orthogonal basis \(1, a_1, a_2 \in \mathcal{B} \cap \mathcal{D}^1, a_3 \in \mathcal{B}^1 \), and we take \(u_1 = 1, u_2 = a_1, u_3 = a_2, u_4 = a_1a_2, u_5 = a_3, u'_1 = 1, u'_2 = a_1, u'_3 = a_3, u'_4 = a_1a_2, u'_5 = a_2 \) (such sets are easily seen to satisfy the necessary criteria for use in defining \(F(\mathcal{C}) \)), then \(L(\mathcal{C})((-\lambda(u))^{1/2}) \) is isomorphic to \(L(\mathcal{C})((-\lambda(u'))^{1/2}) \). For \(\alpha \in L(\mathcal{C})((-\lambda(u))^{1/2}) \),

\[
\alpha 1 + x_1a_1 + x_2a_2 + x_3a_1a_2 + a_3 = (\alpha 1 + x_1a_1 + a_3) + (x_21 + x_3a_1)a_2
\]

and since, for \(\alpha = (-\lambda(u))^{1/2} \), \(N(\alpha 1 + x_1a_1 + x_2a_2 + x_3a_1a_2 + a_3) = 0 \), we have \(N(x_21 + x_3a_1)^{-1}(\alpha 1 + x_1a_1 + a_3) + a_2 = 0 \). Since \((x_21 + x_3a_1)^{-1} = (x_2^2 + x_3^2N(a_1))^{-1} \times (x_21 + x_3a_1) \) by (1) we have, carrying out the multiplication term by term, and converting,

\[
N \left(\sum_{i=1}^{4} \xi_i u'_i + u'_5 \right) = \sum_{i=1}^{4} \xi_i^2 N(u'_i) + N(u'_5) = 0
\]
where

\[\xi_1 = (x^2_1 + x^2_3 N(a_1))^{-1}(\alpha x_2 + x_1 x_3 N(a_1)) \]
\[\xi_2 = (x^2_1 + x^2_3 N(a_1))^{-1}(x_1 x_2 - \alpha x_3) \]
\[\xi_3 = (x^2_1 + x^2_3 N(a_1))^{-1} x_2 \]
\[\xi_4 = -(x^2_1 + x^2_3 N(a_1))^{-1} x_3. \]

In \(K(\xi_1, \xi_2, \xi_3, \xi_4) \subseteq L(\mathcal{C})((-\lambda(u))^{1/2}) \) are the elements

\[\xi^2_3 + \xi^2_4 N(a_1) = (x^2_1 + x^2_3 N(a_1))^{-1}, \]

and hence \(x_2, x_3; x_2(\alpha x_2 + x_1 x_3 N(a_1)) - x_3 N(a_1)(x_1 x_2 - \alpha x_3) = \alpha(x^2_1 + x^2_3 N(a_1)) \), hence \(\alpha \); and finally \(x_1 \). Thus \(K(\xi_1, \xi_2, \xi_3, \xi_4) = L(\mathcal{C})((-\lambda(u))^{1/2}) \) when \(\alpha = (-\lambda(u))^{1/2} \), and the mapping taking \(x_i \) onto \(\xi_i, 2 \leq i \leq 4 \), and \((-\lambda(u'))^{1/2} \) onto \(\xi_1 \) determines an isomorphism of \(L(\mathcal{C})((-\lambda(u'))^{1/2}) \) onto \(L(\mathcal{C})((-\lambda(u))^{1/2}) \) since

\[\xi_1^2 = -N(u_i)^{-1} \left(\sum_{2}^{4} \xi^2 N(u_i) + N(u_2) \right). \]

Now if \(\mathcal{B} \cap \mathcal{B}' = \mathcal{D} \) is two-dimensional, and \(z \in \mathcal{B} \cap (\mathcal{B}')^\perp \), the latter intersection being nontrivial from dimensionality arguments as in Case 2, we may use the above result and Lemma 1 to show \(L(\mathcal{C})((-\lambda(u))^{1/2}), L(\mathcal{C})((-\lambda(v))^{1/2}) \) are isomorphic respectively to fields \(L(\mathcal{C})((-\lambda(u'))^{1/2}), L(\mathcal{C})((-\lambda(v'))^{1/2}) \) where \(u_i, 1 \leq i \leq 4 \), and \(v_i, 1 \leq i \leq 4 \), span the same subalgebra \(\mathcal{D} + \mathcal{D}z \). Lemma 1 then completes the argument.

If \(\mathcal{B} \cap \mathcal{B}' = \mathcal{K}1 \), we have again a nontrivial \(z \in \mathcal{B} \cap (\mathcal{B}')^\perp \) and we take subalgebras \(\mathcal{D}, \mathcal{D}' \) of dimension 2 in \(\mathcal{B}, \mathcal{B}' \) respectively. Again it follows that \(L(\mathcal{C})((-\lambda(u))^{1/2}) \) is isomorphic to \(L(\mathcal{C})((-\lambda(u'))^{1/2}) \) where \(u_i, 1 \leq i \leq 4 \), span \(\mathcal{D} + \mathcal{D}z \), and that \(L(\mathcal{C})((-\lambda(v))^{1/2}) \) is isomorphic to \(L(\mathcal{C})((-\lambda(v'))^{1/2}) \), where \(v_i, 1 \leq i \leq 4 \), span \(\mathcal{D}' + \mathcal{D}'z \). Since \((\mathcal{D} + \mathcal{D}z) \cap (\mathcal{D}' + \mathcal{D}'z) \) is the algebra spanned by 1 and \(z \), we have reduced the argument to the case \(\mathcal{B} \cap \mathcal{B}' \) two-dimensional and are finished.

Corollary 1. The field \(F(\mathcal{C}) \) is independent of the choice of the \(u_i \in \mathcal{C} \) used in defining it.

Proof. If \(\mathcal{C} \) is split, \(F(\mathcal{C}) \) depends only on the dimension of \(\mathcal{C} \) for its definition. If \(\mathcal{C} \) is not split, Theorem 1 shows the independence from \(u_i \).

Corollary 2. If \(\mathcal{C} \) is isomorphic to \(\mathcal{C}' \) then \(F(\mathcal{C}) \) is isomorphic to \(F(\mathcal{C}') \).

Proof. If \(\varphi \) is an isomorphism of \(\mathcal{C} \) onto \(\mathcal{C}' \), \(N'(x \varphi) = N(x) \) for all \(x \in \mathcal{C} \) by (4). If \(u_i, 1 \leq i \leq m + 1 \), are chosen as above to define \(F(\mathcal{C}) \) and \(u_i, 1 \leq i \leq m \), span \(\mathcal{B} \leq \mathcal{C} \), the elements \(u_i \varphi \) in \(\mathcal{C}' \) are orthogonal, have \(N'(u_i \varphi) \neq 0 \) and \(u_i \varphi, 1 \leq i \leq 4 \), span the
composition subalgebra \(\mathcal{B}_\mathcal{F} \subseteq \mathcal{E}' \). Thus \(u_i \varphi, 1 \leq i \leq m + 1 \) may be used to define \(F(\mathcal{E}') \). Now \(L(\mathcal{E}) \) is clearly isomorphic to \(L(\mathcal{E}') \) and

\[
\lambda(u) = N(u_1)^{-1} \left(\sum_{i=2}^{m} N(u_i)x_i^2 + N(u_{m+1}) \right)
\]

\[
= N'(u_2 \varphi)^{-1} \left(\sum_{i=2}^{m} N'(u_i \varphi)x_i^2 + N'(u_{m+1} \varphi) \right) = \lambda(u \varphi)
\]

so \(F(\mathcal{E}) = L(\mathcal{E})(-\lambda(u)^{1/2}) \) is isomorphic to \(L(\mathcal{E}')(\lambda(u \varphi))^{1/2} = F(\mathcal{E}') \).

III. Properties of \(F(\mathcal{E}) \). In this section we prove a sequence of lemmas leading to the proof of our main theorem. We first prove

Lemma 2. Let \(K(x_1, \ldots, x_n) \) be the rational function field in \(n \) indeterminates \(x_1, \ldots, x_n \), \(F \) a field extension of \(K \), \(\alpha_1, \ldots, \alpha_n \in F \). Then there is a \(K \)-place of \(K(x_1, \ldots, x_n) \) into \(F \cup \infty \) mapping \(x_i \) onto \(\alpha_i \), \(1 \leq i \leq n \).

Proof. By induction on \(n \). The result is well known if \(n = 1 \) and the place can, in fact, be defined explicitly. If \(n > 1 \), we use the induction hypothesis, with \(K \) replaced by \(K(x_1) \) to claim there is a \(K(x_1) \)-place \(\varphi \) of \(K(x_1)(x_2, \ldots, x_n) \) into \(K(x_1)(\alpha_2, \ldots, \alpha_n) \) such that \(x_i \) maps to \(\alpha_i \), \(i > 1 \). Now by the validity of the result for one indeterminate, there is a place \(\varphi \) of \(K(x_1)(\alpha_2, \ldots, \alpha_n) = K(\alpha_2, \ldots, \alpha_n)(x_1) \) into \(F \cup \infty \) fixing the elements of \(K(\alpha_2, \ldots, \alpha_n) \subseteq F \) and mapping \(x_1 \) onto \(\alpha_1 \). \(\varphi \varphi \) is then a \(K \)-place of \(K(x_1, \ldots, x_n) \) into \(F \cup \infty \) with the desired property.

Corollary. Let \(\lambda \in K(x_1, \ldots, x_n) \) such that \(K(x_1, \ldots, x_n)(\lambda^{1/2}) \) is a quadratic extension of \(K(x_1, \ldots, x_n) \), \(\alpha_1, \ldots, \alpha_n \in F \), \(F \) a field extension of \(K \). Then there is a \(K \)-place \(\varphi \) of \(K(x_1, \ldots, x_n) \) into \(F \cup \infty \) mapping \(x_i \) onto \(\alpha_i \), for all \(1 \leq i \leq n \) and, if \(\lambda \varphi \) is a square in \(F \), \(\varphi \) can be extended to a \(K \)-place of \(K(x_1, \ldots, x_n)(\lambda^{1/2}) \) into \(F \cup \infty \) mapping \(\lambda \) onto a square root of \(\lambda \varphi \) in \(F \).

Proof. That \(\varphi \) exists follows from Lemma 2. It is known (e.g., [3]), that a place from \(K(x_1, \ldots, x_n) \) into \(F \cup \infty \) can be extended to a place \(\varphi' \) of \(K(x_1, \ldots, x_n)(\lambda^{1/2}) \) into \(F' \cup \infty \), \(F' \) the algebraic closure of \(F \). Since, however, \((\lambda^{1/2})\varphi' \) must be a square root of \(\lambda \varphi \) in \(F' \), and since the square roots of \(\lambda \varphi \) in \(F' \) are in fact, in \(F \), \((\lambda^{1/2})\varphi' \in F \) and \(\varphi' \) maps \(K(x_1, \ldots, x_n)(\lambda^{1/2}) \) into \(F \cup \infty \).

If \(\mathcal{C} \) is a composition algebra over \(K \), \(F \) a field extension of \(K \), we say \(F \) splits \(\mathcal{C} \) (\(F \) is a splitting field of \(\mathcal{C} \)) if \(\mathcal{C}_\mathcal{F} \) is split.

Lemma 3. \(L = K(x_1, \ldots, x_n) \), the field of rational functions in \(n \) indeterminates, \(n \geq 0 \), splits \(\mathcal{C} \) if and only if \(\mathcal{C} \) is split over \(K \).

Proof. We show that, if \(K(x_1, \ldots, x_n) \) splits \(\mathcal{C} \), \(n \geq 1 \), then \(K(x_1, \ldots, x_{n-1}) \) also splits \(\mathcal{C} \) and hence, by induction, \(K \) splits \(\mathcal{C} \) so \(\mathcal{C} \) is split.

Let \(u_1, \ldots, u_e \) be an orthogonal basis for \(\mathcal{C} \) with respect to \(N(x, y) \). This is also an orthogonal basis for \(\mathcal{C}_L \) over \(L \) and, if \(\mathcal{C}_L \) is split, there are \(\xi_i \in L \), \(1 \leq i \leq e \), such
that \(N(\sum \xi_i u_i) = 0 \). Clearing the denominators of the \(\xi_i \) we have, since \(N(ax) = a^2 N(x) \) for \(a \in L \), polynomials \(p_i \) in \(K[x_1, \ldots, x_n] \), not all \(p_i \equiv 0 \), such that \(N(\sum p_i u_i) = \sum p_i^2 N(u_i) = 0 \). We assume, without loss of generality, that \(x_n \) occurs in some \(p_i \) and we let \(k \) be the maximum of the degrees of the polynomials \(p_i \), considered as polynomials in \(x_n \) over \(K(x_1, \ldots, x_{n-1}) \). We can write each \(p_i = x_n^k q_i + r_i \) where \(q_i \in K[x_1, \ldots, x_{n-1}] \), \(r_i \in K[x_1, \ldots, x_n] \), \(r_i \) of degree less than \(k \) in \(x_n \). Then \(\sum (x_n^k q_i + r_i)^2 N(u_i) = 0 \) and, since the \(x_i \) are algebraically independent, we must have \(\sum q_i^2 N(u_i) = 0 \) in \(K(x_1, \ldots, x_{n-1}) \). Thus \(K(x_1, \ldots, x_{n-1}) \) splits \(\mathcal{C} \). Induction completes the proof that \(\mathcal{C} \) is split over \(K \).

Conversely, if \(\mathcal{C} \) is split over \(K \) and \(F \) is any field containing \(K \), there is \(u \in \mathcal{C} \), \(u \neq 0 \) such that \(N(u) = 0 \). But \(u \in \mathcal{C} \) implies \(u \in \mathcal{C}_F \) so, since \(N_F(u) = N(u) = 0 \), \(\mathcal{C}_F \) is split. In particular \(\mathcal{C}_L \) is split.

Lemma 4. Let \(\mathcal{C} \) be a composition algebra over \(K \), \(F, F' \) field extensions of \(K \), \(\varphi \) a \(K \)-place of \(F \) into \(F' \cup \infty \). If \(\mathcal{C}_F \) is split, so is \(\mathcal{C}_F' \).

Proof. We show first that if \(\lambda_1, \ldots, \lambda_n \) are elements of \(F \), not all zero, there is some \(j \) such that \((\lambda_j^{-1} \lambda_i) \varphi \in F', i = 1, \ldots, n \). Let \(j \) be such that \(\lambda_j \neq 0 \) and such that the number \(t \) of \(i \) for which \((\lambda_j^{-1} \lambda_i) \varphi = \infty \) is minimal. If \(t = 0 \) we are done. If not, we may assume, without loss of generality, that \((\lambda_j^{-1} \lambda_i) \varphi = \infty \) for \(1 \leq i \leq t \), \((\lambda_j^{-1} \lambda_i) \varphi \in F' \), \(t < i \leq n \). \(\lambda_i \neq 0 \) since otherwise \((\lambda_j^{-1} \lambda_i) \varphi = 0 \) for \(1 < i \leq n \). Thus \((\lambda_j^{-1} \lambda_i) \varphi = ((\lambda_j^{-1} \lambda_i)^{-1} \times (\lambda_j^{-1} \lambda_i) \varphi = 0 \) for \(t < i \leq n \), and \((\lambda_j^{-1} \lambda_i) \varphi = 1 \) if \(1 \in F' \) and hence for \(\lambda_i \) there are at most \((t-1) \) \(i \) such that \((\lambda_j^{-1} \lambda_i) \varphi = \infty \), a contradiction to the minimality of \(t \). Thus \(t = 0 \).

Now if \(\mathcal{C}_F \) is split, and \(u_i, i = 1, \ldots, n \), are an orthogonal basis of \(\mathcal{C} \) over \(K \), hence of \(\mathcal{C}_F \) over \(F \) and of \(\mathcal{C}_F' \) over \(F' \), there are \(\lambda_i \in F \) such that not all \(\lambda_i \) are zero and \(N_F(\sum \lambda_i u_i) = N_F(\sum \lambda_i^2 N(u_i)) = 0 \). For \(\lambda_i \) such that \((\lambda_j^{-1} \lambda_i) \varphi \in F' \) for all \(i \),

\[
\sum_i (\lambda_j^{-1} \lambda_i)^2 N(u_i) = 0
\]

and hence, \(\sum_i (\lambda_j^{-1} \lambda_i)^2 \varphi N(u_i) = 0 \). Since \((\lambda_j^{-1} \lambda_i)^2 \varphi = ((\lambda_j^{-1} \lambda_i) \varphi)^2, \) it follows that \(N_F(\sum (\lambda_j^{-1} \lambda_i) \varphi u_i) = 0 \) and, since \((\lambda_j^{-1} \lambda_i) \varphi = 1 \neq 0 \), \(\mathcal{C}_F' \) is split.

Lemma 5. Let \(\mathcal{C} \) be a division composition algebra over \(K \), \(\lambda \in K \), and suppose \(L = K(\sqrt{\lambda}) \) is a quadratic extension of \(K \). Then \(\mathcal{C}_L \) is split if and only if there is \(u \in (K(1))^{\perp} \) such that \(N(u) = -\lambda \).

Proof. If there is \(u \in (K(1))^{\perp} \) with \(N(u) = -\lambda \), then \(x = (\lambda^{1/2})1 + u \in \mathcal{C}_L \) clearly has \(N_L(x) = 0 \), so \(\mathcal{C}_L \) is split. Conversely, if \(\mathcal{C}_L \) is split, then there is \(x = a + (\lambda^{1/2})b, a, b \in \mathcal{C}, \) such that \(x \neq 0 \), \(N_L(x) = 0 \). But \(N_L(x) = N(a) + \lambda N(b) + 2N(a, b)(\lambda^{1/2}) \) and thus \(N(a, b) = 0, N(ab^{-1}) = N(a)N(b)^{-1} = -\lambda \). Since \(N(ab^{-1}, 1) = N(a, b)N(b^{-1}) = 0, u = ab^{-1} \) satisfies the criteria.

Finally we give a slight generalization of a result of Jacobson [4], first defining subspaces \(V, V' \) of composition algebras \(\mathcal{C}, \mathcal{C}' \) respectively, to be equivalent if there...
is a nonsingular linear transformation \(\varphi \) of \(V \) onto \(V' \) such that \(N'(x \varphi) = N(x) \) for all \(x \in V, N, N' \) denoting the respective quadratic forms of \(C \) and \(C' \).

Lemma 6. If a composition algebra \(C \) is equivalent to a subspace of a composition algebra \(C' \), then \(C \) is isomorphic to a subalgebra of \(C' \).

Proof. The proof is essentially that of Jacobson [4]. Let \(\varphi \) be the mapping of \(C \) into \(C' \) such that \(N'(x \varphi) = N(x) \) for all \(x \in C \) and suppose that \(B, B' \) are isomorphic composition subalgebras of \(C, C' \) respectively. By (4), \(B \) and \(B' \) are equivalent and, since \(B \) and \(B \varphi \) are clearly equivalent, \(B' \) and \(B \varphi \) are equivalent subspaces of \(C' \). By Witt’s Theorem for bilinear forms, \((B')^1 \) and \((B \varphi)^1 \) are equivalent in \(C' \). Thus, if there is \(u \in B^1 \) with \(N(u) \neq 0 \), which is the case unless \(B = C \), then there is \(u' \in (B')^1 \) such that \(N'(u') = N'(u \varphi) = N(u) \). Then the algebras \(B + Bu, B' + B'u' \) are composition subalgebras of \(C, C' \) respectively which are isomorphic by (2). Beginning with \(B = K1, B' = K1' \) one can, in successive steps, thus construct an isomorphism of \(C \) into \(C' \).

Since in this proof, whenever \(2 \dim B = \dim C \), we need only produce elements \(u, u' \) in \(B^1, (B')^1 \) respectively with \(N(u) = N'(u') \neq 0 \), we can clearly weaken the hypotheses to obtain the

Corollary. Let \(C \) be a 2n-dimensional composition algebra, \(V \) a nonisotropic \((N(x, y) \) nondegenerate when restricted to \(V) \) subspace of \(C \) of dimension \(n+1 \) which contains an \(n \)-dimensional composition subalgebra \(B \) of \(C \). Then if \(V \) is equivalent to a subspace of a composition algebra \(C' \), \(C \) is isomorphic to a subalgebra of \(C' \).

We are now prepared to restate and prove

Theorem 2. Let \(C \) be a composition algebra of dimension greater than one over \(K \). Then

1. \(C_{F(C)} \) is split.
2. If \(F \subseteq K \) is any field, then \(C_F \) is split if and only if there is a \(K \)-place of \(F(C) \) into \(F \cup \infty \).
3. If \(C' \) is any composition algebra over \(K \) such that \(C_{F(C)} \) is split, then either \(C' \) is split over \(K \) or \(C \) is isomorphic to a subalgebra of \(C' \).

Proof. As in the definition of \(F(C) \) in §II, we pick a set \(u_i, 1 \leq i \leq m+1, m = 2^k-1 \), where \(2^k = \dim C \), and denote by \(B \) the composition subalgebra of \(C \) spanned by \(u_i, 1 \leq i \leq m \). We may assume, by Lemma 1, that \(u_1 = 1 \) and hence

\[
\lambda(u) = N\left(\sum_{i=2}^{m} x_i u_i + u_{m+1} \right).
\]

Proof of 1. If \(C \) is split, Lemma 3 yields the result since \(F(C) = L(C) \) is a rational function field in \(m-1 \) indeterminates over \(K \). If \(C \) is not split, neither is \(C_{L(C)} \), by Lemma 3, and since \(\lambda(u) \) is by definition \(N(\sum_{i=2}^{m} x_i u_i + u_{m+1}) \), where \(\sum_{i=2}^{m} x_i u_i + u_{m+1} \in (L(C)1)^2 \), Lemma 5 yields the result.
Proof of 2. If there is a K place from $F(\mathcal{C})$ to $F \cup \infty$, \mathcal{C}_F is split, by Lemma 4 and Part 1 of this theorem.

If \mathcal{C} is split, \mathcal{C}_F is split for any $F \supseteq K$. By Lemma 2, there is a K-place of $F(\mathcal{C}) = K(x_2, \ldots, x_m)$ into $F \cup \infty$ for any $F \supseteq K$ as desired.

Suppose \mathcal{C} is not split, \mathcal{C}_F is split. By (5), \mathcal{C}_F contains a totally isotropic subspace W of dimension m over F. By a dimensionality argument W intersects $F u_1 + \cdots + F u_{m+1}$, so there is $u = \beta u_1 + \sum_{i=2}^{m+1} \beta_i u_i$ in \mathcal{C}_F, $u \neq 0$, with $N_F(u) = 0$. Thus

$$\beta^2 = - \sum_{i=2}^{m+1} \beta_i^2 N(u_i)$$

and, if $\beta_{m+1} \neq 0$,

$$(\beta \beta_{m+1}^{-1})^2 = - \sum_{i=2}^{m} (\beta_i \beta_{m+1}^{-1})^2 N(u_i) - N(u_{m+1}).$$

By Lemma 2, corollary, there is a K-place φ of $F(\mathcal{C}) = K(x_2, \ldots, x_m)((-\lambda(u))^{1/2})$ into $F \cup \infty$ mapping x_i to $\beta_i \beta_{m+1}^{-1}$, $(-\lambda(u))^{1/2}$ to $\pm \beta_{m+1}^{-1}$.

If $\beta_{m+1} = 0$, some β_i, $i \neq m+1$ must be nonzero, since $0 = \beta^2 + \sum_{i=2}^{m} \beta_i^2 N(u_i)$ and not all of β_i are zero. We assume, without loss of generality, that $\beta_m \neq 0$. Then

$$(\beta \beta_{m+1}^{-1})^2 = \sum_{i=2}^{m} (\beta_i \beta_{m+1}^{-1})^2 N(u_i).$$

Again by the corollary to Lemma 2, there is a K-place of $F(\mathcal{C}) = K(x_2, \ldots, x_m)((-\lambda(u))^{1/2}) = K(x_2 x_{m-1}, \ldots, x_m x_{m-1}, x_m^{-1})((-\lambda(u))^{1/2})$ into $F \cup \infty$ mapping $x_i x_{m-1}$ to $\beta_i \beta_{m+1}^{-1}$, $2 \leq i < m$, x_m^{-1} to zero, and $x_m^{-1}(-\lambda(u))^{1/2}$ to $\pm \beta_{m+1}^{-1}$, since $x_i x_{m-1}$, $2 \leq i < m$, x_m^{-1} are algebraically independent over K.

Proof of 3. If \mathcal{C} is split, $F(\mathcal{C})$ is a rational function field over K and hence, if $\mathcal{C}_{F(\mathcal{C})}$ is split, \mathcal{C}' is split over K by Lemma 3.

If \mathcal{C}, \mathcal{C}' are not split over K and $\mathcal{C}_{F(\mathcal{C})}$ is split, then since $\mathcal{C}_{L(\mathcal{C})}$ is not split and $F(\mathcal{C})$ is a quadratic extension of $L(\mathcal{C})$, Lemma 5 implies there is $u' \in (1')^+ \subseteq \mathcal{C}_{L(\mathcal{C})}$ such that $N'_{L(\mathcal{C})}(u') = \lambda(u)$. Thus in $\mathcal{C}_{L(\mathcal{C})}(x_1)$,

$$N'_{L(\mathcal{C})}(x_1 + u') = x_1^2 + \sum_{i=2}^{m} x_i^2 N(u_i) + N(u_{m+1}).$$

It follows easily from a result of Pfister ([5], Satz 3) that the subspace $K u_1 + \cdots + K u_{m+1}$ is equivalent to a subspace of \mathcal{C}'. By the Corollary to Lemma 6, \mathcal{C} is isomorphic to a subalgebra of \mathcal{C}'.

We note finally that, in the event dim $\mathcal{C} = 4$, i.e., when \mathcal{C} is a generalized quaternion algebra over K, a judicious choice of the elements u_i in the definition of $F(\mathcal{C})$ will give rise to the same splitting field obtained by Witt [7].

BIBLIOGRAPHY

THE OHIO STATE UNIVERSITY, COLUMBUS, OHIO