Gibbs phenomenon for functions of two variables
HTML articles powered by AMS MathViewer
- by Fred Ustina
- Trans. Amer. Math. Soc. 129 (1967), 124-129
- DOI: https://doi.org/10.1090/S0002-9947-1967-0213818-0
- PDF | Request permission
References
- Min-Teh Cheng, The Gibbs phenomenon and Bochner’s summation method. II, Duke Math. J. 17 (1950), 477–490. MR 38466
- James A. Clarkson and C. Raymond Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), no. 4, 824–854. MR 1501718, DOI 10.1090/S0002-9947-1933-1501718-2
- Fred Ustina, Convergence of the Hausdorff means of double Fourier series, Canad. Math. Bull. 11 (1968), 585–591. MR 241900, DOI 10.4153/CMB-1968-070-5 H. Wilbraham, On a certain periodic function, Cambridge and Dublin Math. J. 3 (1848), 198-201.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1967 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 129 (1967), 124-129
- MSC: Primary 42.40
- DOI: https://doi.org/10.1090/S0002-9947-1967-0213818-0
- MathSciNet review: 0213818