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Introduction. The class of Hausdorff absolutely closed spaces was first intro-

duced by Alexandroff and Urysohn [2]. A Hausdorff space X is said to be

absolutely closed if every homeomorphic image of X which is a subset of a Haus-

dorff space K, is a closed subspace of K. Thus absolute closedness is a slight weaken-

ing of compactness. We can find this notion and some extensive studies about it

in Alexandroff-Hopf [1] and M. H. Stone [14]. Katëtov [10] proved that for any

Hausdorff space X, there exists a Hausdorff absolutely closed space kX in which X

is densely imbedded, and which also has the characteristic property : If / is a

continuous mapping from X to a Hausdorff space T such thatf(X) is dense in T,

then there exist a subspace M of kX and a continuous mapping F from M onto T

such that X^M and F\X=f

In the present paper, we extend the definition of absolute closedness to non-

Hausdorff spaces, and study the corresponding properties of them. In§I, we present

a different characterization in terms of extension properties of continuous mappings

of X in such a way that kX is the largest absolute closure (see Definition 1.7) of X.

We also characterize k X completely in the later part of §1. In §11, we show that every

space can be imbedded as a closed subspace of an absolutely closed space. In

§§III and IV, we discuss the smallest absolute closure (see Definition 3.2) of a

Hausdorff space, and the products of k Y's. Finally, in §V, we characterize the

projective and injective spaces in the category of absolutely closed spaces (with

continuous maps).

0. Preliminaries. 0.1. Notations and definitions. The notations used here are

standard. For example, we denote the closure of a subset A of a topological space

X by A or by Clx A, and the set of all neighborhoods ofp s A' by 'ft(p). We use the

standard definitions for filter base, filter, and ultrafilter. An open filter base is a

filter base consisting exclusively of open sets. An open filter is a nonempty collection

of open sets say °l( satisfying the following properties :

(a) 0 i <%.

(b) If Ux, U2 e % then UxnU2e <H.

(c) If U 6 % and G is open, G=> U, then Get.

An open ultrafilter is an open filter which is maximal in the collection of open filters.
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0.2. Lemma. Iffy is an open ultrafilter on X, the following hold:

(a) If G is an open subset of X, then G n U¿ 0 for all U e <W iff G e <%.

(b) IfGi, G2 are open subsets of X and GXKJ G2e <%, then Gxe°l/ or G2e <%.

(c) IfGx $ <%, and Gx is open, then G2 = (X- Gx) e <W.

(d) Ifp is a cluster point of W, then °ll -* p, that is, *% converges to p.

Proof, (a), (b), (d) are obvious. For (c), see Obreanu [11]. In (d), note that %

may converge to other points too.

0.3. Lemma. If 'S is an open filter on X, and % is an open ultrafilter containing

'S, the following hold:

(a) If p is a cluster point of fy, then p is a cluster point of 'S.

(b) If&->p, then ̂ ^ p.

Proof. Obvious.

0.4. Lemma. Suppose X is an open(2), dense subset of a topological space Y, and

fy is an open ultrafilter on X. Let <%' = {G : G is open in Y, G n Xe%}. Then <%' is

an open ultrafilter on Y. Moreover, °ll -> p iff <%'-*■ p.

Proof. It is easy to see that 0 £ #' and if Glt G2 e <%', then Gxr\G2e <%'. Also

if U'eW and A is open in Y, A=>U'; then A n X=>U' r\ Xe<&. Therefore

A n Xe <%, so A e W. We have so far shown that W is an open filter on Y. Let

& be any open filter on Y such that #'<=â7. We wish to show that <W' = @. Take

and fix A e ^. It suffices to prove that A e <%'. Now for all U e <%, (A n X) n U

= (A n U) n AV 0 since U e <%<= 'S, A e 'S, and X is dense in Y. Since °U is an

open ultrafilter on X, then A n Xe <%. It follows that A e <V.

Now suppose <% ->p. Since <% is an open filter on Fand <^<= ̂', then from 0.3(b)

it follows that <2r'->/>.

Conversely, %' ->p easily implies % ->p.

0.5. Lemma. Lei -Jfie a« o/><?«, ¿ew.se subspace of a topological space Y. If0)/' is

an open ultrafilter on Y and <%=<&' n X={U' n X : V el/}, then W is an open

ultrafilter on X. Moreover % -> p iff%' -+ p.

Proof. Since I is a dense, open subset of Y, by 0.2(c), let'. Hence <% =

{Ue<%' : U<=X}. Clearly % is an open ultrafilter on X and <%'= {G : G open in

Y, G n Xe <%}. Hence the last part of the assertion follows from 0.4.

0.6. Lemma [7, p. 5]. Let X be dense in each of the Hausdorff spaces S and T.

If the identity mapping on X has continuous extensions a from S into T, and r from

T into S, then a is a homeomorphism onto, and a~1 = r.

0.7. Definition. Let X be dense in each of the spaces S and T. Iff is a homeo-

morphism from S to Tsuch that fis the identity on X, we say S is essentially the

same as T relative to X.

(2) Lemmas 0.4 and 0.5 still hold without assuming that X is open in Y.
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0.8. Lemma [7, p. 92]. Let E be a Hausdorff space, and suppose X is dense in E.

Let <p be a continuous mapping from a space E into a space Y such that <p\X is a

homeomorphism; then <p maps E— X into Y— <piX).

I. The largest absolute closure of a topological space.

1.1. Definition. A Hausdorff space X is called absolutely closed if X is closed

in every Hausdorff space in which it is imbedded.

From this definition, a compact Hausdorff space is absolutely closed.

1.2. Lemma. Let X be a Hausdorff space, then the following are equivalent:

(a) X is absolutely closed.

(b) Every open filter base on X has a cluster point.

(c) Every open cover of X has a finite dense subsystem iwhose union is dense in

X).

(d) Every open ultrafilter on X converges.

Further, even if X is not Hausdorff, properties (b)-(d) remain equivalent.

Proof. The proof is straightforward. See Bourbaki [4, p. 160], or Scarborough-

Stone [13].

1.3. Example of an absolutely closed noncompact space (due to Urysohn [15]).

Let N* = N u {w} be the 1-point compactification of N, where N is the usual

space of the positive integer. Let K=iNx N*)u {a}, where a$NxN*. The

topology on K is defined as follows: NxN* has the product topology. A basic

neighborhood of a is of the form £/„(a) = (Jiân U^ {flw) u {"} f°r "= L 2, 3,...,

where aXj is the lattice point {i,j). Then K is easily seen to be absolutely closed

from Lemma 1.2(c). However K is not compact, because it has Nx{oj) as a closed

subset. This example will be very useful later.

1.4. Example. We may ask, why, in Definition 1.1, we restrict our attention to

Hausdorff spaces. As we will observe below that for Tx space X, " X is closed in

every Tx space in which it is imbedded" is true only when X is finite.

Let Zbe an infinite Tx space; we can find an infinite sequence of distinct points,

say S={oi, fl2,..., fl„,.. .}<= X. Let// £ A'and Y=Xkj {p}, topologized as follows.

For x £ X, neighborhoods of x are unchanged. We define a typical neighborhood

of p, say Uip), as follows: £/(//) = {//} u i\Jmno unian)), where Unian) are neigh-

borhoods of an in X. Then Y is a Tx topological space, and X is not closed in Y

since pe X.

1.5. Definition. Let X be a topological space, not necessarily Hausdorff; we

say X is generalized absolutely closed if X satisfies property (b) in 1.2, and hence

properties (c) and (d) also.

Scarborough-Stone [13] call such spaces //(i) spaces.

1.6. Definition. Let A", 7 be Hausdorff spaces (respectively, arbitrary topolog-

ical spaces) such that

(a) X is dense in Y.

(b) Y is absolutely closed (respectively, generalized absolutely closed).
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We call Y an absolute closure (respectively, generalized absolute closure) of X.

1.7. Definition. Let y be an absolute closure (respectively, generalized absolute

closure) of X. We say Fis a largest absolute closure (respectively, largest generalized

absolute closure) of X, if for any other absolute closure (respectively, generalized

absolute closure), say F of X, and if i: X-*- T is the injection, then there exists

¡: Y-> T (onto) such that i\X=i.

Such a Y (if one exists) is essentially unique, as will be shown later.

1.8. Theorem [5]. If X=\~[a Xa, where no Xa is empty, then X is absolutely

closed iff each Xa is absolutely closed.

1.9. Theorem [13]. If X=Y\a Xa, where no Xtt is empty, then X is generalized

absolutely closed iff each Xa is generalized absolutely closed.

1.10. Remark. It is well known and easy to see that the following hold:

(a) Every continuous image of an absolutely closed space is absolutely closed,

if it is Hausdorff.

(b) Finite unions of absolutely closed spaces are absolutely closed, if they are

Hausdorff spaces.v

(c) The intersection of two absolutely closed spaces may not be absolutely

closed.

For the same reasons, (a), (b), (c) hold for generalized absolutely closed spaces.

1.11. Theorem [11]. Let Xbe a Hausdorff space ; there exists at least one absolute

closure 3f of X.

We outline the construction of X, as it will be referred to later.

Let X^={% : % is an open nonconvergent ultrafilter on X). Let Jc = Xu X^

be the disjoint union, under the following topology: The basic open sets of 2

are those of the form G = G u GT where GT = iaU : <% e X", G e <W). Then A'is

a Hausdorff space such that X is dense in X. Moreover, % is absolutely closed.

1.12. Theorem (Katëtov [10]). Let X be a Hausdorff space. Then there exists a

Hausdorff absolute closure Y of X satisfying the following property: Iff: X->T is

continuous and T is Hausdorff such that C1/(A') = F, then there exists a subspace

M of Y containing X and a continuous mapping F of M onto T such that F\X=f.

1.13. Theorem. For any Hausdorff space X, there exists a Hausdorff space kX

which is a largest absolute closure of X. Moreover, kX is essentially unique in the

sense that if T is another largest absolute closure of X, then T is essentially the same

as kX isee Definition 0.7).

Remark. kX is the same space as Katëtov's absolute closure of X in 1.12,

though described differently. The following proof is simpler than Katëtov's and

takes advantage of Obreanu's construction of Â'in 1.11.

Proof. We define kX= X u X^ = J? as a set as in 1.11. We define 01, the basis

for the topology of «X, as follows: F £ J1 iff either B=G u {0s) where 0> e X~
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and Ge0>, or B=G where G is open in X. It is easy to verify that if Bx, B2 e SS,

then Bx n B2e SS. Clearly SS is a basis on kX. It follows that X is open in kX.

We will now show that kX is Hausdorff.

Since X is Hausdorff and X is open in kX, then any two distinct points in X

have disjoint neighborhoods in kX.

Let xe X and 0* e A""'; then there exists an open neighborhood G of x in X

such that G i 01, for otherwise 0* would converge to x. Therefore there exists

He0> such that H r\ G= 0. We now have H u {^} and G as disjoint neighbor-

hoods of 0* and x in kX.

Let a3!, ^2 be distinct points in A*~ ; there there exist Gx e 0sx and G2 e ^2 such

that GxnG2=0. Let (Fp^u {0>}x and W2 = G2 u {^}2, then Wx and W2 are

disjoint neighborhoods of 0>x and 5P2 in «•A'.

Note that the subspace topology of X, as subspace of kX, is precisely the given

topology of X.

kX is absolutely closed : Let $/ be an open ultrafilter on kX, we want to show °U

converges. Put 0>={Un X : Ue<%}. Then by 0.5, 0> = {Ue% : U<=X}, and 0>

is an open ultrafilter on X. If 3P converges to a point xe X, then x is a cluster point

of <%, hence % -> x. If 0> is nonconvergent on X, then ^ e X". Let W= G u {0>}

be a neighborhood of 0* in kA"; then G eSP. Therefore Get. Thus G meets every

member of ^. All the more, so does W. Hence 0> i% a cluster point of ^ in kX,

thus <%-*&>.

We want to prove that kX is a largest absolute closure of X. Let T be an absolute

closure of X and /': X-*- T be the inclusion. We want to extend /' to i: kX-*- T

continuously. It will follow that if such í exists, í will be onto. For by 1.10(a),

ï(kX) is absolutely closed, so it is closed in T, and contains a dense subset X of T;

thus ï(kX) = T.

Let 0> e X~ = xX-X. Let <%={U : U open in T and U n A^e <2»}. By 0.4, ^ is

an open ultrafilter on T. Since T is absolutely closed, there exists p e T such that

<% -*■ p. By 0.4 again, we have 0> ->p in P. We now define for each ^e A"",

i(0s)=p; and for x e A", i(x) = x.

We shall now show that ï is continuous.

Case 1. For xe X, let Wbe an open neighborhood of x in P; then

i-\W)nX= i~\W) = G

is an open neighborhood of x in X, hence is open in kX, and i(G)<= »V.

Case 2. For a2 e A"", we have i(0')=p where 0* -> p in P. Let If be an open

neighborhood of /? in T; there exists G e 0> such that (?c W. Thus G u {a8} will

be an open neighborhood of a3 in kX such that

ï(G U {a8}) = i(G) u z(^) = /(G) u{/)} = Gu {/>} c IT.

*X is essentially unique : For if Y is an absolute closure of X such that Y is a
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largest such in the sense of 1.7, then there exists i : Y -*■ kX where i is a continuous

extension of the inclusion map i: X-> kX. Also, there exists/: kX-*- Y such that

j is also a continuous extension of the inclusion map ¡. Therefore by 0.6, kX is

essentially the same as Y.

1.14. Definition. If A1 is a subspace of a topological space Y, we say Y is

Hausdorff except for X if for any pair of distinct points a, b in Y, which are not

both in X, a, b have disjoint neighborhoods in Y.

1.15. Theorem. For any topological space X, there exists kX which is a largest

generalized absolute closure of X, and which is Hausdorff except for X. Moreover,

kX is essentially unique.

Proof. We construct kX in exactly the same way as in 1.13. It is absolutely

closed by the same proof as above. As was shown in 1.13, it is clear that kX is

Hausdorff except for X.

For the second part of the proof, we want to construct i: kX^-T, where F is

any other generalized absolute closure of X, which extends the inclusion i: X^-T.

The same argument shows that every open ultrafilter 0 on X converges to some

p in F. Since now F is not necessarily Hausdorff, p may not be unique. We now

define ï as follows: For x e X, we define ¡(x) = /'(x) = x; for 0 e X^, choose peT

such that 0 -> p, and define ¡i0) =p. Exactly the same proof shows that ¡ is

continuous.

The uniqueness of kX still holds, by the following lemma.

1.16. Lemma. If X is dense in T, and T is Hausdorff except for X, and iff: T-*- T

is continuous andf\X= identity on X, then f= identity on T.

Proof. If not, there exists y eT such that/(y) = z and z=£y. Thus y$X. Since

T is Hausdorff except for X, there exist U, V which are disjoint neighborhoods of

y and z in T. By continuity off at y, y has a neighborhood W such that/( WO^ V-

Consider the neighborhood U n W of y. Because X is dense in F, there exists

x e X n Un W, and fix) = x. But /(x) e V since x e W, so x e V n U, which is

impossible.

1.17. We proved that for a Hausdorff space X, if Fis any absolute closure of X,

there exists f: kX^* Y which extends the inclusion i: X^- Y continuously. By

analogy to the corresponding property of the Stone-Cech compactification, we ask :

If Y is any absolutely closed space and /: X —> F is continuous, can / always be

extended continuously to /: #cA"-> F? The answer is No, from the following

example.

Let X=N be the set of positive integers, which is not absolutely closed. Let

Y=NxN* u {a} as in 1.3. Then X is mapped homeomorphically into  F by

/(x) = (x, cu) for x £ A". Suppose there exists/: kX'-*■ Y such that/|X=f Then by

0.8,   we  have J(KX-X)cY-f(X)=Y-iNx{to}).   Choose  0eKX-X;  then

fi0) =p' e Y- N x {<*>}. Thus either p' e N x N or p' = a. In any case, there exists a
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neighborhood Wofp' which is disjoint from Nx{oj}. (In fact, from the topology

of Y, every basic neighborhood of p' is disjoint from N x {w}.)

Let G u {0} be an open neighborhood of 01 in kX, where G e0>, then

f(G u m) = /(G) u/(^) = /(G) u {//} = (G x {«,}) u {p'}.

Thus no neighborhood of 0* is carried by / into W. Thus / is not continuous and

/has no continuous extension to kX.

1.18. However, the following result does hold if we restrict attention to open

maps.

Theorem. Let X, Y be topological spaces and suppose Y is generalized absolutely

closed. Let f: X—> Y be a continuous, open map, then there exists f: kX'-> Y such

thatf\X=f.

Proof. Let us define /: kX -> Y as follows : for x e X, we define f(x) =/(x) ; for

0> e kX- X, let f(0>)={/(G) : G e 0>}. Then clearly f(0>) is an open filter base on

Y. Let <% be the open filter on F generated by/(^); we will show that *% is an open

ultrafilter on Y. For if not, suppose °U u {A} where A^0!/ and A is open in Y, is con-

tained in some open filter; then /(G) n A ̂  0 for all Ge0>. Thus f~\A) c\ G± 0

for all Ge0>, thus f~\A) e 0>. Therefore /(/" \A)) ef(0>), and A e ty, a contra-

diction. Thus we proved f(SP) generates an open ultrafilter °ll on Y. Therefore

there exists p' e Y such that °U -^p'. Notice that there may be more than one such

p'; choose one arbitrarily. Let us define /(#)=//.

We check that/is continuous.

If SP e kX— X and f(0r)=p' as described above, let Wbe an open neighborhood

of// in Y. Then We <% because %-> p'. Hence W^f(G) for some G e 0>. Thus

Gu{a"} will be an open neighborhood of SP in kX such that

f(G u {0>}) = /(G) u/(^) = /(G) u {//} = IF.

Thus/is continuous at 0*.

If x £ X, let f(x)=p', and let IK, an open neighborhood of// in 7, be given. Since

f(x) =/(x) =//, then G^-^If) will be an open neighborhood of x in X, hence

an open neighborhood of x in kX, such that/(G) =/(G)c W. Thus/is continuous

at x e A" also.

1.19. Lemma. Let X be a Hausdorff space and let T be an absolute closure of X.

Then (a) implies (b) :

(a) For each p e T— X, and for each open subset G of X such that p e Clr G,

G u {p} is open in T.

(b) If G, H are open in XandGnH=0, then ClT G n Clr #<= X.

Proof. If p e (T- X) n (Clr G n C1T H) where G, // are open in X and

G n //= 0, then by (a), G u {/?} and H u {/?} are open neighborhoods of p in P.
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Hence (G u {//}) n (H u {//})={//} will be open in T, but this is impossible since

X is dense in F.

1.20. Lemma. Let X be a Hausdorff space, and let T be an absolute closure of X.

Then the following are equivalent:

(b)   // G, H are open in XandGnH=0, then C1T G n C1T H<= X.

(b)' Distinct nonconvergent open ultrafilters on X converge to distinct points in

T-X.

Proof, (b) => (b)A Let 0X, 02 be two distinct nonconvergent open ultrafilters

on X. Then there exists Gi e 0X and G2 e 02 such that Gi n G2 — 0. As is shown

in the proof of 1.13, there exist px,p2e T- X such that 0X -> px and 02 -*■ p2 in F.

If Pi =p2, then since px e Clr Gj and p2 e C1T G2, it would follow that pt =p2

e (Clr Gi n Clr G2) n (F- 7). This contradicts (b). Thus px ±p2.

(b)' => (b): Let G, Z7 be open sets in X such that G n /f= 0 and suppose

p e (F- A") n (Clr G n Clr H). Let ^(//) be the open filter base of all open neigh-

borhoods of// in F. Let SS be the trace of ^l(p) on X. Then J1 u {G} has the finite

intersection property, so it is contained in an open ultrafilter on X, say 'S. We know

<& converges in F; since F is Hausdorff, we must have <&'->/> in F. Similarly

a? u {//} has the finite intersection property, so it is contained in an open ultra-

filter on X, say 'S'. For the same reason, 'S' ^p. By (b)', (S = (S'; but this is

impossible, since G n i/= 0 and Ge*S, H e'S'.

1.21. Theorem. //Ik a« absolute closure of a Hausdorff space X with the follow-

ing two properties:

(a) All sets of the form G U {//}, w«ere G is o/?e« ¡« X andp e C1t G — A", are open

in T.

(b) X is open in T.

Then T is essentially the same as kX (see Definition 0.7). Conversely, kX is an

absolute closure of X with these properties.

Proof. It is known that X is open in kX. Also it is clear that in kX, if 0 e X",

then 0 e C1KX G iff G e 0 for G open in X. Therefore kX satisfies (a) and (b).

From Theorem 1.13, we know that there exists v.kX^T (onto) such that

i\X=i, the inclusion map. We will show that ¡is one-one and open, then ¡will be

a homeomorphism which is the identity on X.

ïis one-one: By 0.8, we have ï(kX— A")cF— X. Thus we only have to show í is

one-one on kX—X. Recall I is defined by: For 0 e X^ = kX— X, i(0)=p where

0 -»// in F; if 0i, 02 e X" are such that 0i+02, then 0X and 02 are two distinct

open nonconvergent ultrafilters on X. From 1.20 together with the assumption,

we conclude that 0X and 02 converge to distinct points in F-A". Thus if

i(^i)=Pi and î(02)=p2, we must have/Zj//z2.
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ï is open :

Case 1. If x e A" and G is an open neighborhood of x in X, then ¡(G) = i(G) = G

which is open in T.

Case 2. If 0 e kX- X, let G u {0} be a basic open neighborhood of 0 in kX;

thus G£éP. Now, ¡(Gu{áa}) = /(G)uf(áa) = ¡(G)u{//} = Gu{//}. Since ^^//

in F, thus p e Clr G. Thus G u {/>} is open in F by assumption.

II. The imbedding of a topological space as a closed subspace of an absolutely

closed space.

2.1. Theorem. Let X be a Hausdorff space. Then X can be imbedded as a closed

subspace of an absolutely closed space K.

Proof. Let us define K as follows: i=(IxiV*)uIv as a set, where

N* = Nu {w} is the 1-point compactification of TV", and X" = kX— X is the set of

all nonconvergent open ultrafilters on X.

We define a topology on K as follows : as usual, XxN* has the product topology ;

i.e., for (x, ri)e XxN, a basic neighborhood of it is of the form G x {«} where G

is an open neighborhood of x in X. And for (x, œ) e Xx {ai}, a basic neighborhood

of it is of the form G x [«, o>] where G is an open neighborhood of x in X and [«, tu]

denotes {«, « +1,..., a>).

Let 0 e X^ ; 0 is an open nonconvergent ultrafilter on X. We define a basic

neighborhood of 0 to be of the form U(0) = (G x A/) u {0} where Ge0. Notice

that G is an open deleted neighborhood of 0 in k X.

We are going to prove the following:

1. This is a topology on K: We need only check that for 0 e X", 0t(0) = {U(0)}

forms an open neighborhood system at 0.

(a) S3(0)± 0 since Xe0. Also 0 e Ç) SS(0).

(b) Given (Gx xN)<u {0} and (G2 xN)u {0s}, two neighborhoods of 0, where

G1; G2 e 0, then ((d xN)u {0}) n ((G2 x N) u {0}) = ((G: n G2) x AT) u {^} is

a basic neighborhood of 0 because Gx n G2 £ a0.

(c) Given (Gx N) u {^"} £ ^(^), let y e (Gx TV) u {0}; then either y=(x,«)

eGxN or y=0. If y=(x, «) then Gx{ri) will be a basic neighborhood of y

contained in the given one. If y=0, then (GxN) u {a2} will be a basic neighbor-

hood of y contained in the given one.

2. X can be imbedded as a closed subset of K: This is clear, because we can

identify X with A"x{o>} by mapping f(x) = (x, <o) for each xe X; f is a homeo-

morphism, and Xx{w) is closed in K.

3. Kis Hausdorff: For points in A"x A^*, it is clearly so, since A" and N* are both

Hausdorff. Let (x, ri) e X x N and 0 e A""A since kX is Hausdorff, there exists an

open neighborhood Gj of x, and a basic open neighborhood of 0, say G2 u {0}

where G2e0, in kX, such that Gx n (G2 u {0})=0. Thus Gx n G2= 0. Now

Gi x {«} and (G2 xN)u {0} will be two disjoint neighborhoods of (x, «) and 0 in

F respectively. Let 0U 02 e X" where 0i±02. Then there exists Gxe0i and
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G2 e 0>2 such that GxnG2=0. Thus (Gx xN)u {0>x} and (G2 x N) u {^2} will

be two disjoint neighborhoods of 0X and ^2 in K.

4. AT /j absolutely closed. Let <f be an open cover of K; we want to find a finite

dense subsystem of S. It is clear that we may assume S consists of basic open sets.

For each 0> e X~=kX- X, pick WveS such that 0>eWv. We can write

W„ = (G„ xN)u {0>} where Gp e 0>.

For each xe X, look at the sequence {x} x N*. Pick W0(x) e S such that

(x, to) e Wo(x). We can write W0(x) = U0(x) x [nx, cu] where U0(x) is an open

neighborhood of x in X and «x e A/. For each k = l,2,.. .,nx-l, there exists

Wk(x) e S such that (x, k) e Wk(x). We can write Wk(x) = Uk(x)x{k} where i/k(jc)

is an open neighborhood of x in X.

Let C/(x) = U0(x) n i/i(x) n • • • n £/nx _ x(x). Then C/(x) is open in X for each

xe X. Thus t/(x) is open in «X for each x e X.

Consider (€={V(x) : x e X} u {Gp u {0>} : 0> e Af}. This is an open cover of

kX. Since kX is absolutely closed, there exists a finite subsystem, say

9 = {U(xx),..., U(xk), GPl u {^J,...,<?,„ U {^m}},

satisfying Cl(U^) = ><X.

Let us define a family & as follows :

(GPlxN)u{S*x}

(GP2xN)u{0*2}

(GPmxN)v{0>m}

U(xx)x[nXl,mlU(xx)x{l},

U(x2)x[nX2,m], U(x2)x{l},

U(xk) x [nXk, w], U(xk) x {1},..., U(xk) x {nXk -1}.

We claim that Cl ((J &) = K.

Proof of the claim. First of all, it is clear that X x N is dense in K. Thus it is

enough to show that Cl (\J &) = X x N. For then Cl ((J ^)=>C1 (Xx N) = K.

Let (x, n)e XxN, we want to prove that for each basic neighborhood W of

(x, ri), W n ([J ^") # 0. Since W is a basic neighborhood of (x, «), we can write

W= G x {ri} where G is an open neighborhood of x in X, hence open in kX. Thus

G meets some member of 'S because Cl ((J ^) = kX. Thus either G n [/(xj) ?¿ 0 for

some 1 á/^A: or G n GPy^ 0 for some 1 ̂ j^m.

Case 1. G n [/(xj^ 0 where lgi^jt.

(a) If n^nxp then IF=Gx{/j} meets t/(x,)x [w^, oj] which is a member of ^

In fact, (G x {«}) n ( t/(x¡) x [«.,,, w]) = (G n C/(x¡)) x {«} ̂ 0.

(b) If n<nXl, then l^n^n^-l; thus W=Gx{w} meets U(x¡)x{n} which is a

member of 3f.

.., U(xx)x{nXl-l}

.., U(x2)x{nX2-1}
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Case 2. G n GPl^ 0 for some 1 gjgm, then W= G x {«} meets (GP/ xi\r)u {^}

which is a member of ^

Thus we have proved that K is absolutely closed.

2.2. Theorem. Let X be any topological space. Then X can be imbedded as a

closed subspace of a generalized absolutely closed space.

Proof. We know, by Theorem 1.15, that kX, which is the largest generalized

absolute closure of X, still exists and is constructed in the same way. The previous

construction of F in 2.1 still applies, and exactly the same proof shows that K is

generalized absolutely closed.

2.3. Remark. Strecker (unpublished) has shown that every Hausdorff space can

be imbedded as a subspace of a minimal Hausdorff space. Combining this with 2.1,

we have the following stronger result: Every Hausdorff space can be imbedded

as a closed subspace of a minimal Hausdorff space.

III. Smallest absolute closure. For locally compact spaces X, we can construct

the 1-point compactification X* of X by adding one single point to X. It has been

shown [6] that if F is a Hausdorff compactification of a noncompact Hausdorff

space X which is minimal (in a natural sense), then F is essentially the same as X*,

and moreover, X has to be locally compact.

In this section, we will discuss the analogous theorems for locally absolutely

closed spaces. We restrict our attention to Hausdorff spaces in this section.

3.1. Definition. A Hausdorff space X is locally absolutely closed if for each

point in X, there exists a neighborhood of it which is absolutely closed. From this

definition, every absolutely closed space is locally absolutely closed.

3.2. Definition. Let F be an absolute closure of X; we say F is a smallest

absolute closure of X, if for any other absolute closure F of X, there exists i' : Y^-T

such that ¡" is a continuous extension of the inclusion ¡: A"-> T.

3.3. Remark. If Xhas a smallest absolute closure T, then Fis essentially unique

in the sense of 0.7.

The following two theorems are quoted from Obreanu's paper [12] about locally

absolutely closed spaces.

3.4. Theorem. For every locally absolutely closed space X which is not absolutely

closed, we can construct an absolutely closed space X* by adjoining one single point

o) to X, in such a way that X is dense in X* and the trace on X of the open filter of

open neighborhoods of to is the open filter Si, where Si is the open filter generated by

the family of all complements of absolutely closed subspaces of X.

3.5. Theorem. In order that we can imbed a space X which is not absolutely

closed, into an absolutely closed space from which it differs by only 1 point, it is

necessary and sufficient that X be locally absolutely closed.

We are now ready to prove the following theorem.
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3.6. Theorem, (a) If X is locally absolutely closed, but not absolutely closed,

then X* constructed above (see 3.4) is the smallest absolute closure of X.

(b) If a space X has a smallest absolute closure say u>(X), then X is locally abso-

lutely closed and ai(A') is essentially the same as X*, or X.

Proof. For (a), let Y be any absolute closure of X; we want to show that there

exists V: F-> X* such that i" is an extension of the inclusion i: A"-> X*.

Let us define /"( Y— X) = w and i'\X=i; then V is continuous. For let W be an

open neighborhood of a> in X*; then W=>G u {cu} where G= X— V, where V is

absolutely closed in X. Thus

i'-\W) => ('"'(GUM) = i'-1(G)^Ji'-1(co) = Gu(Y-X) = Y-V

which is open in Y, since V is absolutely closed and therefore closed in Y. Thus

i' is continuous at each point of Y— X. Also, since X is locally absolutely closed in

Y, A" is open in Y [12]. Thus /" is continuous at each point of X.

For (b), if to(X) is the smallest absolute closure of X, we want to show that

£«>(A") = X u {at most 1 point} and that X is locally absolutely closed. Suppose,

on the contrary, there exist a, beio(X) — X such that a^b. Since u>(X) is an

absolute closure of X, there exists/: kX^oj(X) such that /is a continuous ex-

tension of the inclusion i: X-> u>(X). Now/is onto (because f(xX) is absolutely

closed in oj(X), hence it is closed in co(X), and contains the dense subspace X of

tu(A')). Thus there exist p, qei<X—X such that f{p) = a and f{q) = b. Of course

p¥=q. We identify p, q in kX. Let Z be the quotient space of kX under this identi-

fication. Let g:/cAr-s-Z be the quotient map. Thus g\X= identity on X, and

£(/0=£(<7) = [/>]eZ.
We verify that Z is Hausdorff: If x, _y are distinct points in Z such that x, _v^ [/>],

then x, y e kX— {p, q} which is open in kX. There exist Gx, G2 which are disjoint

open neighborhoods of x, y in kX—{p, q}; hence Gl5 G2 are disjoint open neigh-

borhoods of x, y in «r A1. Thus g(Gi) = Gx and g(G2) = G2 will be disjoint neighbor-

hoods of x, v in Z. If x e Z is such that x# [/>] e Z, let G, // be disjoint open sets

in kX such that G contains x, // contains p and «7. Then g(G) and g(H) will be

disjoint open sets in Z such that x e g(G) and [p] e g(H).

X is a subspace of Z because G n X=g(G) n A" for any open set G in kX.

Z is an absolute closure of X: Z is absolutely closed because it is a continuous

image of an absolutely closed space kX. Moreover, if G is open in Z, then

g-1{G) = GcKX if [p] $ G; and g-l(G) = G\J {p,q}<=icX if [p] e G. In any case,

G n AV 0, since A" is dense in kX.

By assumption, there exists h:Z-> oj{X) such that h\X= i where /' is the inclusion

map from Xinto w{X). Let/'=/¡og, where kX^Z^ m(X). Thus/': «X-+ <o(AT)

is continuous and/'| Ar=/. Since/agrees with/' on a dense subset A" of kX, and

both /cA'and oj(X) are Hausdorff,/=/'. But/(/>)=a#è=/(ç) while

f'(p) = h°g(p) = hog(q)=f>(q),
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a contradiction. Thus w(X) = A"u {at most 1 point}. By Theorem 3.5, A'is locally

absolutely closed. By the essential uniqueness of the smallest absolute closure of

X, we hence conclude that co(X) is essentially the same as X*, unless X is itself

absolutely closed, in which case obviously a>(X) = X.

IV. Products of kA"s. Glicksberg [9] has proved that for completely regular

spaces X, supposing the set Yla*a0 Xa is infinite for every ce0, a necessary and

sufficient condition that ß(Yla X«) = 1AL ßXa is that Yla Xa be pseudocompact. In this

section, we are going to investigate the analogous situation for the product of «A"s.

Before dealing with the general case, it is convenient to deal with the case of two

factors.

4.1. Theorem. Let X, Y be nonempty spaces. Then k(Xx Y) = k X x k Y iff at least

one of the following statements is true :

(a) either X or Y is a finite Hausdorff space ;

(b) kX= XandKY=Y.

Proof. (If) : Suppose (b) is true, then both X and F are generalized absolutely

closed, therefore A"x Fis generalized absolutely closed [13]. Thus

k(Xx Y) = XxY = kXxkY.

If (a) is true, we may assume X is finite and Hausdorff, therefore absolutely closed,

so X=kX. We will show A"xkF=*(A"x F).

Lemma. If X= Xx u A"2, where Xx, X2 are closed and disjoint subsets of X, then

kX~kXx U kX2.

Proof of the lemma. We first establish a 1-1 correspondence between kX and

kXx u kX2 which is the identity on X= Xx u A"2 by obtaining a 1-1 correspondence

between the nonconvergent open ultrafilters on X and those on A"¡, for ¡= 1, 2.

Let 0 be a nonconvergent open ultrafilter on X; thus 0 e kX— X. For each

G e 0, G=Gi u G2 where GX = G n Xx is open in Xx and G2 = G n A"2 is open in

A"2. Since A"= AA u X2 is a diseñe union, then Gx n G2= 0, and Gx, G2 are open

in X. By 0.2, we have either Gx e 0 or G2 e 0, but not both. Suppose Gx e 0.

We claim that for any He 0, writing as above H=HX u H2 where Hx is open in

Xi and H2 is open in A"2, we have Hi e 0. For since H2 n Gx= 0 and Gx e 0,

then H2$0; hence by 0.2, Hx e 0. Thus by 0.5, the trace of 0, say 38, on Xx will

be an open nonconvergent ultrafilter on A\ and it will generate all of 0; and

SSeKXi-Xi.

Conversely, let S3 e (kXx - Xx) u (kX2 - X2) ; suppose SS e kXx - Xv Thus SS is

a nonconvergent open ultrafilter on Xx and SS is thus a base of an open filter 0

on X since Xx is open in X. One easily sees that 0 must be a nonconvergent open

ultrafilter on X. Thus 0 e kX— X. If the process described in the previous para-

graph is applied to 0, it clearly yields SS again. One also observes that

kXi n kX2 = 0.
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Thus we have shown that the following function is a 1-1 correspondence of

kXi u kX2 onto kX.

f(x) = x    for x e X = Xi u A"2,

f(SS) = 0   for Sie (kXi - Xx) u (K X2 - X2)   and   0 e kX- X.

We will show/is a homeomorphism.

Take S3 e (kXx - Xx) u (KX2-X2). Suppose Si e (kXx - Xx). Let 0=f(3S) and

let W= G u {0} be an open neighborhood of 0 e kX- X where Ge0. Let

G = GX u G2 where Gx and G2 decompose G into disjoint open sets as described

above. By 0.2, suppose Gx e 0. Thus Gi u {0} will be a neighborhood of SS such

that/ÍGA u {f))cGu {0}. Therefore /is continuous at each point of

(kXx-Xi)\J(kX2-X2).

Also / is clearly continuous at each point of X= Xx u A"2, since X is open in kX.

We will now show/is also an open map on kXx u kX2. Since both kAA and kA"2

are open in kXx u kX2, it suffices to show / is open in kXx and kX2. Suppose

W=GX u {Si} is a basic open set of KXt. Then Gx e0. Hence f(W) = Gx u {0}.

Since J'c^, then G! £ 0. Since Gx is open in X, f(W) = G1 u {0} is open in «A'.

Now if W^Xi, then If is open in X since AA is open in A'. Hence /( W) = W is

open in kX. Thus/is open on kXv Similarly,/is open on kX2.

Thus we have shown that kXxkXx u kX2, proving the lemma. By using finite

induction, we can easily show that if X=XX u- -u Xn, a discrete union, then

kXxkXi U---U kXu.

Now we return to the proof of the theorem. Since X is finite, let

X = {Xi, x2,..., xn).

Thus

A'xF=({x1}xF)u--.U({xJxF).

Since X is finite Hausdorff, then by the lemma, we have

kÍXx Y) ä k Yx u • • • u k Yn,    a discrete union

£kFu---UkF,   « times,

a /cA"x/cF.

Thus/cA'xK:F=A'x/1rFx;/i(A'x F).

(Only if): Assume Kr(A"x Y) = kXxkY and suppose (b) fails; say kY^ Y. Let

PBkY-Y. Then

KArx{p} c kA'x^F- F) = (/<A'xKF)-(/cA'x F) c (KArxicF)-(Arx F)

= kÍXx Y)-Xx Y,

which we know is discrete in its relative topology. Hence kX, being homeomorphic

to k Xx {//}, is discrete. Being generalized absolutely closed, it must be finite. Hence

X is finite Hausdorff.
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4.2. Theorem. Let Xa be nonempty spaces for all a. Then x(\~\a Xc^ = \~\cc kX„ iff

at least one of the following two conditions is satisfied.

(a) k Xa = Xa for all a.

(b) There exists Xao which is not generalized absolutely closed. Xa is finite and

Hausdorff for all a^a0. Moreover, all but finitely many Xa's have only one point.

Proof. (If) : Suppose (a) is true ; since Xtt = kXs for all a, then X„ is generalized

absolutely closed for all a, hence TJa Xa is generalized absolutely closed (see [13]).

Therefore k(TL Xa) = Y\« Xa = Y\a **.•

Suppose (b) is true: Let X=TJa¥:ao Xa. Then X is finite and Hausdorff. Thus

»cA'=A'. By Theorem 4.1, we have k(Xx Xao) = KXxi<Xao = XxkXUo. Since each

Xa is finite, kX„ = Xa for all a^a0. Thus

jtj xa\ = K(a-x xao) = xx Kxao = ( n kX«) x «x«0 = n *x-
\  a I Xa^ao / a

(Only if): Suppose «(FL Xa) = n« KXa- Suppose now (a) fails for a0, i.e.,

Xao =£ KXa¡j. We want to show (b) holds. Clearly the index-set has more than one

member. Let X=YJa¥,ao Xa, then k(Xx Xao) = KXxKXao. By Theorem 4.1, either

X or XUo is finite and Hausdorff. But Xao is not finite, since it is not generalized

absolutely closed. Hence A" is finite, showing that (b) holds.

V. Projective and injective spaces in the category of absolutely closed spaces.

We know that in the category of compact Hausdorff spaces and continuous maps,

A1 is projective (see 5.1) iff X is extremally disconnected [8], and A'is injective (see

5.2) iff A'is a retract of a Tychnoff cube. In this section, we are going to investigate

the projective and injective spaces in the category of absolutely closed spaces (and

of generalized absolutely closed spaces) and continuous maps.

5.1. Definition. Let <€ be a category of topological spaces and continuous

maps ; we assume that all continuous maps are admissible ; X e <£ is called pro-

jective if, whenever/: Y^-Z and g : X -> Z are admissible maps where Y, Z e t>,

and/is onto, then there exists admissible map g' : Af-> Y such that g=f° g'.

5.2. Definition. Let <€ be as in 5.1. Xet? is called injective if, whenever

/: Z -> y and g:Z^ X are admissible maps, where /is 1-1 and Y, Z e'ë, then

there exists g': Y^ X such that g = g' °f.

5.3. Theorem. In the category of Hausdorff absolutely closed spaces and con-

tinuous maps, X is projective iff X is finite.

Proof. If X is finite, then clearly it is projective.

Conversely, if A'is projective, we will show that Xis discrete. Since Zis absolutely

closed and discrete, X must be finite.

Suppose, on the contrary, that X is not discrete. Then there exists ae X such

that a is not isolated, i.e., {a} is not open. Let Y= X— {a}, and let a be any point

not in YxN*. We define A = (YxN*) u {a} with the following topology:

Fx N* has the product topology.
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Basic neighborhoods of a are of the form (GxN)u {a} where G is an open

deleted neighborhood of a in X. (A deleted neighborhood of a has the form

W— {a}, where IF is a usual neighborhood of a.) It is easily seen that this deter-

mines a topology on A.

A is Hausdorff. For points in Fx N*, we can always separate them by disjoint

neighborhoods, since F and N* are both Hausdorff.

Let (y, n) e Yx N. Since y#a, there exist Gx, G2 which are disjoint open neigh-

borhoods of y and a in X. Then Gx x {«} and (G2 x N) u {a}, where G2 = G2—{a),

are disjoint neighborhoods of (y, n) and a in A.

Let (y, eu) e Fx{ü>}; then again y^a. There exist Gi, G2 which are open

neighborhoods of y and a in A" such that Gx n G2= 0. Then Gx x [«, cu] and

(G2 x TV") u {a}, where «ejV and G2 = G2 — {a}, will be disjoint open neighborhoods

of (y, cu) and a in A.

A is absolutely closed. The proof is exactly analogous to the one described in

Theorem 2.1 that K is absolutely closed.

Let us define B=(Yx N*) u {a} under the following topology: Fx N* has the

product topology. Basic neighborhoods of a are of the form (GxJY*)u {a} where

G is an open deleted neighborhood of a in X. Let i: A -> B be the identity map.

Then ¡' is clearly continuous; thus B is absolutely closed because it is a continuous

image of A (see 1.10). Of course ¡' is onto. Let/ Ar-> B be defined by j(a) = a and

/OO-O', <") for each y e Y.
j is continuous. Let (y, cu) e Fx {co}c:.ß and let H7be a basic open neighborhood

of (y, co) in B. We may write W= G x [«, a>] where G is an open neighborhood of

y in F and « £ A/. Thus /'(G) = Gx{w)cW. Let aeB; a-j'^a). Take W a basic

neighborhood of a in B. Then W/= G x N* U {a} where G is an open deleted

neighborhood of a in A". Thus G u {a} will be an open neighborhood of a in X

such that/(G u {a})=/'(G) u;'(a) = (G x {a/}) u {«}<=(G x N*) u {a}. Now, consider

the diagram:

vi->B

\ /j
X

Since A"is projective, there exists/: X^ A such that/ is continuous and i °j'=j.

Therefore/(F)= Fx {cu} and/(a) = a. We will show that/ is «of continuous at a:

for if W is any basic open neighborhood of a in .4, then W=iGx N) u {«} for

some G open in F. But there exists «o open neighborhood G' of a in A" such that

/(G')c H/ because/(C) = G' x {eu}d: W. Thus we reach a contradiction. Hence X

is discrete and thus finite.

5.4. Theorem. In the category of generalized absolutely closed spaces and con-

tinuous maps, the projective spaces are precisely the finite Hausdorff spaces.
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Proof. If A" is projective, generalized absolutely closed, we will show A" is discrete.

Thus it follows X is finite and Hausdorff. We will sketch the proof and leave the

details to the reader.

Let Ac X be any subset of X and P= X— A. We will show A, B are both closed

in X; it follows then that A'is discrete. Let us construct Fas follows: Y—KA u KB

as a discrete union, where KA = (A xN*) u (kA — A), disjoint union, under the

following topology: AxN* has the product topology. Let 0* e kA — A; a typical

neighborhood of S* is of the form (GxN)u {5P} where G is open in A and GeS?.

Similarly we define KB. By Theorem 2.2, KA, KB are generalized absolutely closed,

and A x {w} is a closed subspace of KA, B x {œ} is a closed subspace of KB. Thus

Fis generalized absolutely closed by 1.10.

Let us construct Z as follows: Z=(Xx N*) u (kA — A) u (kB—B), where these

sets are considered to be disjoint, under the following topology: XxN* has the

product topology. For 0>ei<A-A, a typical basic neighborhood of 0* is of the

form (G x N) u {0s}, where G is open in X, and such that G n A = He0>. Similarly

for points in kB—B. It is easy to see that Z is a topological space. Let i: Y-+Z

be the identity map. i is continuous (the proof is straightforward); therefore Z is

generalized absolutely closed. Consider j: X ->-Z defined byy'(x) = (x, a>) for each

x 6 X. j is clearly continuous. Now look at the following diagram :

Y-^Z

X

By assumption, X is projective; there exists g: X->- Y, continuous and iog=j.

Since i is the identity map, and j(A) = Ax {a>}, j(B) = Bx {œ}, we conclude that

g(A) = Ax{w} and g(B) = Bx{oj}. Therefore g~\A x{«>}) = A and g"\Bx{<«}) = B.

We conclude that A and B are closed in A' since A x {cu} and B x {m} are closed in

F Thus A" is discrete ; therefore it is finite and Hausdorff.

5.5. Theorem. In the category of absolutely closed spaces and continuous maps,

the injective spaces are those which consist of only a single point.

Proof. Let Z={ai;, bxj,cx,a,ß : i= 1, 2,..., j — 1,2,...} where all these elements

are assumed to be distinct.

Define the following neighborhood system on Z: Each a0 is isolated and each

bu is isolated. We define the basic neighborhoods of c¡, a, ß as follows:

SS(Ci) = {v\cx) = jj {ay, bU) c,} : n = 1,2,...\,

SS(a) = {v\a) = Ü Ü {%. «} : « = 1,2,...),

á?(/3) = {v\ß) = (J Ü {*«, A : n = 1, 2,...).
l. y = li=n ;
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Then Z is minimal Hausdorff, hence absolutely closed (see [3]). (This example is

also due to Urysohn [15].)

Let Y={aXi, c¡, a, ß : ¡ = 1, 2,.. .,j= 1, 2,...}, as a subspace of Z. Then F is

absolutely closed because Y=A u B where A = {au, cua : i= 1, 2,... ,j= I, 2,...}

and B={ß) as subspaces of Z which are both absolutely closed.

Now, if X is absolutely closed and injective, suppose there exists a, b e X such

that A#Z>. Since X is Hausdorff, there exist Gu G2 such that Gx is an open neigh-

borhood of a in X, G2 is an open neighborhood of b in X, and Gy n G2^ 0.

Now let us define/: F^ A"as follows:/(/!) = a and fiß) = b. Then/is continuous,

because A, F are open in F. Let/ Y^-Z be the injection; of course y is one-to-

one and continuous. Consider the following diagram:

Now, since X is injective, there exists f':Z^> X such that/' is continuous and

/' oj=fi Thusf'(A) = a andf\B)=fiß) = b. Wencef'-\Gx)^f'-\a)^A,

f'-\G2) =>f'-\b) => B   and  f'-\Gx) nf"\G2) = 0.

Thus /'_1(0 and/'-1(G2) are disjoint open sets containing A and B respectively.

But in Z, the sets A, B do not have disjoint open neighborhoods. This is a contra-

diction. Thus A"={a single point}. Obviously, if X={& single point}, then X is

injective.
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