On the equation $n=p+x^{2}$
HTML articles powered by AMS MathViewer
- by R. J. Miech
- Trans. Amer. Math. Soc. 130 (1968), 494-512
- DOI: https://doi.org/10.1090/S0002-9947-1968-0266873-7
- PDF | Request permission
References
- R. Ayoub, An introduction to the analytic theory of numbers, Math. Surveys No. 10, Amer. Math. Soc., Providence, R. I., 1963.
E. Bombieri, On the large sieve, Mathematika 12 (1965), 201-225.
G. H. Hardy and J. E. Littlewood, Some problems of partitio numerorum: III: On the expression of a large number as a sum of primes, Acta Math. 44 (1923), 1-70.
H. Halberstam, On the representation of large numbers as sums of squares, higher powers, and primes, Proc. London Math. Soc. (2) 53 (1951), 363-380.
C. Hooley, On the representation of a number as a sum of two squares and a prime, Acta Math. 97 (1957), 189-210.
L. K. Hua, Additive theory of prime numbers, Transl. Math. Monos., Amer. Math. Soc., Providence, R. I., 1965.
Ju. V. Linnik, The dispersion method in binary additive problems, Transl. Math. Monos., Amer. Math. Soc., Providence, R. I., 1963.
K. Prachar, Primzahlverteilung, Springer, Berlin, 1957.
G. K. Stanley, On the representation of numbers as a sum of squares and primes, Proc. London Math. Soc. (2) 29 (1928), 122-144.
E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press, Oxford, 1951.
N. G. Tschudakoff, On the density of the set of even numbers which are not representable as a sum of two primes, Izv. Akad. Nauk SSSR Ser. Mat. 1 (1938), 25-39. (Russian)
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 130 (1968), 494-512
- MSC: Primary 10.40
- DOI: https://doi.org/10.1090/S0002-9947-1968-0266873-7
- MathSciNet review: 0266873