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1. Introduction. Let A' be a nonvoid completely regular Hausdorff space, let

C(X) be the space of all continuous, complex-valued functions on X, and let

E^ C(X) be a subspace which separates points of X and contains the constant

functions and is an algebra under pointwise multiplication. In [1] Bishop proved

that if X is compact and metrizable, and if as a subspace of C(X) with the supremum

norm, F is a Banach algebra, then there exists a smallest subset M of X with the

property that each function in E takes on its maximum absolute value on M. He

called M the minimal boundary and exhibited a few of its properties. Bishop also

showed that if X was compact but not metrizable, then the minimal boundary

need not exist.

In §2 we remove the restriction of metrizability on X, and consider spaces of

type C(X). We say that C(X) (or sometimes X) has a minimal boundary Mx if

Mx is the smallest subset of X with the property that each function which is

bounded and attains its maximum absolute value on Xin fact attains this maximum

absolute value on Mx. In our fundamental Theorem 2.7 we characterize those

spaces X for which Mx exists. As a consequence we observe that if Mx does exist,

it is dense in Zand it consists precisely of all the Gô points in X. If Xis metrizable

or dispersed, then Mx always exists, while if X is an infinite compact extremally

disconnected space, then Mx cannot exist. We complete the section by giving an

example in which the minimal boundary Mx exists, but is not even a Borel subset

of X.

§3 deals with inheritance properties of minimal boundaries with respect to

subspaces and products of given spaces. The main theorem of the section, Theorem

3.1, says the following. An arbitrary completely regular Hausdorff space F can be

embedded topologically in a completely regular Hausdorff space X such that Mx

exists and such that if MY exists, then Mx- = Mx n Y. It follows from this theorem

that if X is such that Mx exists, then it is by no means true that for each closed

subspace F of X, MY must exist. However, it is true for any subspace F which is a

G6 (closed or not) in X. Finally we show that countable products of spaces with

minimal boundaries also have minimal boundaries, while uncountable products of

nontrivial spaces never have minimal boundaries.

§4 concludes the paper. In it we demonstrate that if X is not compact, then the
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Stone-Cech compactification ßX of X has a minimal boundary if and only if X

is pseudo-compact and X itself has a minimal boundary. From this result we

deduce that C(MX) has a natural identification with C(A) only when Mx is pseudo-

compact and ßMx = X.

The author acknowledges with pleasure discussions with Professors William

G. Bade and Adam Kleppner.

2. Characterization of the minimal boundary. We set about to characterize the

minimal boundary of C(A), and list a few of its properties and consider several

examples.

2.1. Definition. Let Abe an arbitrary topological space. Let/be a real-valued

continuous function on X. Let

B, = {x e X : \f(x)\ = sup {\f(y)\ : y e X}}.

Let CS(A) consist of all continuous, real-valued functions/on A such that B,^ 0.

Then/e CS(A) if and only iff attains its maximum absolute value on A. Note

that CS(A) = C(A) if and only if X is pseudo-compact. Furthermore, CS(X) need

not be closed under multiplication of functions. For let X= [— 1, 1) and let

f(x) = \x\,   xeX,   g(x) = \x + \,       x < 0,

= \, x 2: 0.

Then / g e CS(A) but fg$Cs(X). On the other hand, if/2:0 and «äO and if

fihe C5(A), and if Bf n Bh ̂  0, then fh e CS(X). This observation will be useful

in what follows.

2.2. Definition. A subspace M of A is a boundary for C(A) if and only if for

every fe CS(X) we have M n Bf=£ 0. If there is a smallest such subspace, we

call it the minimal boundary of C(A), and denote it by Mx.

When X is compact this definition coincides with that given in [1]. It is to be

noted that if X is not pseudo-compact, there is no analogous concept of minimal

boundary defined by all the continuous functions on A, since some of those are

unbounded. However, it might be possible to consider a boundary defined by the

larger class of continuous functions on X which are bounded but which do not

necessarily attain their maximum absolute values. We shall not develop this idea

further here. We also mention that we could just as well consider complex-valued

functions. The notion of minimal boundary would be the same, and all the

theorems parallel to those given here.

It is obvious that A itself is always a boundary, so that the notion of "smallest"

always makes sense, even if such a set might not exist. However, it is perfectly

conceivable that a "minimal" boundary might exist without it being the " smallest "

boundary. Thus we need to justify the terminology.

First we reduce our study to topological spaces which are both completely

regular and Hausdorff. For an arbitrary topological space A, the completely

regular Hausdorff space Y identified with A is defined in [3, p. 41], and C(A)
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and C(Y) are isomorphic in every sense; so are CS(X) and CS(Y). In particular, if

x e X, let xx be the equivalence class consisting of all y e X such that for each

fe C(X), we have/(>0 =f(x). Then the Y defined above is in fact the set of all such

equivalence classes, endowed with the topology inherited from X.

2.3. Theorem. Let X be a topological space and let Y be the completely regular

Hausdorff space derived above. Then Mx exists if and only if MY exists, and when

they do exist they are identifiable.

Proof. Let Mx exist, and let M={xx : there exists aniel such that x e xx and

x e Mx}. Then certainly M is a boundary for C(Y). That it is the smallest boundary

for C(Y) follows from the fact that Mx is the smallest boundary on C(X) and

from the construction of Y. So M=MY; Mx and MY are identified in the obvious

way. Now let MY exist, and for each xx e MY let x0 be a fixed element of xx. Let

M = {x0 e X : xxe MY}. By the isomorphism of CS(X) and Cs( Y), M is a boundary

for X, and the fact that MY is the smallest boundary for Y and the uniqueness of

x0 in each xx yields M as the minimal boundary for X. Thus M=MX. Once again

Mx and MY can be identified in the natural way.

N.B. Henceforth, we shall always assume that any topological space we discuss

is completely regular and Hausdorff.

Next we determine which spaces are endowed with a minimal boundary. For a

subspace D of X, let X- D be the complement in X of D.

2.4. Lemma. If A is a nonvoid Gd subset of X, then there exists an fe CS(X)

such that Bf<=A.

Proof. Let A = p|"= i Un, Un open in X, and let x e A be fixed. Then the complete

regularity of X yields a function/,: X-> [0, 1/2"] which is continuous, such that

/„(*)=1/2» and/n(Z- Un) = 0. Letf=^=xfn. Thenfe CS(X) and B,çA.

2.5. Corollary. If{x} is a Gd, then Bf = {x}for somefe CS(X).

2.6. Lemma. If M is a boundary for C(X) and if x is not a G6 point, then M—{x}

is a boundary for C(X).

Proof. Assume without loss of generality that xe M, and let fe C„(X), /^0,

such that xeBf. We must show that (M—{x}) r\Bf^0. Inasmuch as B, is a

closed Gd [3, p. 15] and x is assumed to be a non-G^ point, there exists a point

z e Bf such that zj^x. The complete regularity of and Hausdorff topology on X

yield a continuous function h: X^> [0, 1] such that h(z)=l and h(x)=0. Then

f+he CS(X) and B,+h Q B, - {x}. But M is a boundary for C(X), so M n B,+h+ 0.

Therefore we have (M-{x}) r\Bf^=0. Since thefe CS(X) was arbitrary, the lemma

follows.

2.7. Theorem. For any space X, the minimal boundary Mx exists if and only if

every nonempty closed G6 subset of X contains a Gà point.
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Proof. We first show that if Mx exists, then every nonempty closed Gô in A

contains a Gó point. Assume that A is a nonvoid closed Gó without any G6 points,

and let M be an arbitrary boundary for C(X). By Lemma 2.4, there is an/e CS(A)

such that B,^A. Then M r\B,^0, so that there is an x e M n Bf^A. By hy-

pothesis, x is not a G¿, so Lemma 2.6 yields M—{x} as a boundary. Therefore M

cannot be the smallest boundary. Conversely, assume the condition holds, and let

M={x e X : {x} is a G6 point}. Then M is certainly a boundary because the maxi-

mum absolute value of any function in CS(A) is a closed Gd; M is the smallest

boundary by virtue of Lemma 2.5.

We note immediately that if A is metrizable, then Mx exists, since each element

of A is a G6. In fact, the same is true if the first countability axiom prevails on X.

That this is a strictly larger class of spaces is assured by the existence of a compact

Hausdorff space for which the first countability axiom holds but which is not

metrizable [6, p. 164]. A space A for which Mx exists and is different from A is

the ordinals less than or equal to the first uncountable Q, with the order topology.

Then Mx = X— {Ü}. Finally, if A is a nonmetrizable topological group which is TQ,

then Mx does not exist [4, Theorem 8.3], and if A is an uncountable product of

nontrivial spaces with the product topology, then also Mx does not exist. In each

case there are no G6 points in the space.

2.8. Corollary. If Mx exists, then it consists precisely of the Gó points in X.

2.9. Corollary. If Mx exists, then it is dense in X.

Proof. Simply note the definition of complete regularity.

2.10. Corollary. If M is a boundary which contains properly no other boundary,

then M=MX.

Proof. If M contains no other boundary, then it is precisely the collection of

Gd points, so M=MX.

Corollary 2.10 tells us that the boundaries for C(A) form a lattice, that the con-

cept of minimal and of smallest boundary coincide, so the term "minimal

boundary" is grammatically sound. It is easy to show that if Ais compact and

Hausdorff, then the Silov boundary [9], Choquet boundary [8], and strong bound-

ary [9] of C(A) exist, are identical, and are equal to X, so that when the minimal

boundary exists, it is dense in each of these boundaries. It is also apparent that if

A and Y are homeomorphic, then Mx and MY are coexistent if either deigns to

exist, and when they exist, they are homeomorphic. Nevertheless, if A and Y are

given, and iff: A-^ Fis a one-to-one and onto and continuous map, and if Mx

exists, this in no way implies that MY exists. Just let F be a space for which MY

does not exist, and let A be the same space as a set, but with the discrete topology,

and let/be the identity function. Then MX = X, and there is no MY.

A natural question to ask is if the process of obtaining minimal boundaries

can continue; i.e. if Mx is the minimal boundary for C(A), does MiMx) exist? If
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MiMx) does exist, may M{Mx)^Mx1 Since each point in Mx is a G6, M(Mx) exists

and MiMx) = Mx, so the process happily stops after the initial step.

A topological space X is said to be dispersed if it contains no nonvoid perfect

subspace [7], For such spaces we have the following

2.11. Theorem. If X is dispersed, then Mx exists.

Proof. Let A be a nonvoid G6 subset of X. Since any subspace of a dispersed

space is also dispersed, so is A, and this means that there is an isolated point

x e A. Thus there is an open set U in X such that U n A ={x}. On the other hand,

A = (~)n=i Un, where Un is open in X. This means that {x} = (~]n=i (U n Un), so

that x is a G6 point in X. Now refer to Theorem 2.7, and the proof is complete.

We have shown that dispersed spaces and metrizable spaces each have minimal

boundaries. These types of spaces are different. For the one-point compactification

of a discrete space is dispersed, and if uncountable, then it is not metrizable. The

same is true for the space of ordinals less than or equal to the first uncountable.

Next we look at spaces for which the minimal boundary does not exist. A space X

is called extremally disconnected if and only if the closure of each open set is open

[3, p. 22].

2.12. Theorem. If X is an infinite compact extremally disconnected space, then

Mx fails to exist.

Proof. Assume that Mx exists. Then each point of Mx is a G6, which means

rather more—namely, that each point of Mx is isolated. Since Mx is dense in X

which is infinite, Mx contains an infinite set (xn)ñ=i- Define/: Mx-> [0, 1) by

/(xn)=l —1/«, all «, and/(x) = 0, for all other xe Mx. Then/is continuous on

Mx, and has a continuous extension to X [3, p. 96]. Then B¡ n Mx= 0, so that

Mx cannot be a boundary.

The theorem is not true for all extremally disconnected spaces, since if X is

discrete, then it is extremally disconnected but Mx — X. On the other hand, there

are numerous infinite compact extremally disconnected spaces. Let F be an infinite

compact (Hausdorff) space, and let C**(Y) be the second conjugate space of

C(Y). Then C**(Y) is isometrically (and algebraically!) isomorphic to C(X),

where X is an appropriate compact, extremally disconnected space [5, p. 1022].

Furthermore, Fis embedded as a dense discrete space in X. Consequently, even if

X has a dense subspace of isolated points, Mx need not exist.

It is clear that if Mx exists, it need not be open in X. For let Y be such that MY

exist but My =£ Y, and for each n, let Yn = Y, and set X= F]"= i Yn, where X is

endowed with the product topology. Then Mx exists and Mx = F]™= i MYn (this

will follow directly from Theorem 3.5). However, things are worse. If we consider

the smallest cr-algebra generated by the closed and open sets of X to be the

Borel sets of X, then our next example shows that Mx can exist without being a

Borel set.



308 S. L. GULICK [May

2.13. Example. Let F=[0, 1] with the usual topology, and let Z be a non-Borel

subset of Y, which by the axiom of choice exists. Let the elements of Z be

denoted by {yK : X e A}, A an index set. For each A e A, let 7A be the collection of

ordinals less than or equal to the first uncountable under the order topology, and

let the first uncountable ordinal be yK itself. Think of the 7A as being distinct

entities. Let A= Y u (JAsA 7A. For xeX such that xeYK for some A e A, and

such that x^yK, let a neighborhood basis consist of those sets in 7A which are

neighborhoods of x in the order topology of 7A. For x e Y, let a neighborhood V

of x contain a neighborhood U of x in [0, 1 ] (with its own usual topology) together

with a neighborhood in the order topology of 7A for each yK in U. It is simple to

verify that A is a topological space and is Hausdorff. Furthermore, Y and each

FA are embedded topologically in A. To show that A is completely regular, let

A be a nonvoid closed subset of A, and x $ A. If x $ Y, then there is a A e A such

that x e 7A. Since 7A is completely regular, there is a continuous function

/0: 7A-^[0, 1] such that f0(y)=0 for y e 7A with y>x, and f0(x)=l, and

MA n 7A) = 0. Now define/: *-* [0, 1] by f(y) =f0(y), for ally e 7A, andf(y) = 0,

all other y e X. Then/is continuous on A, and/(x) = l, while f(A)=0. Next, if

x e Y, then there is an open set U in 7 with xeU, and with the property that

for each yx in U there is an open set FA in 7A, with yK e VK, and such

that (U u UyAet/ Pa) n A= 0. Since 7is completely regular, there is a continuous

function /0: 7 -> [0, 1 ] such that f0(x) = 1 while f0( 7— U) = 0. Furthermore, for

each A e A, there is a continuous function/A: Y^^[0,fo(yÁ)] such that /A(j\)

=/oW and /A(7-FA)=0. Now define /: *->[0, 1] by f(y)=f0(y), for all

j £ 7, and f(y) =A(y), for all y e 7A, for each A e A. Then / is continuous on

A, and f(x)=l, and f(A)=0, which is just what we want. Thus A is completely

regular.

Next we identify the G6 points in A. Certainly if x e 7A and x^yA, then x is a

G6 point in 7A, and hence in A. If x e 7 with x^yK, for all A e A, then let (£/„)"» i

be an open neighborhood system for x in 7, and let Vn= Un u UAeA„ ^a> where

A„ consists of all A e A such that yK e Un. Then Fn is open in A, and H"=i y/n={x},

so that x is a G6 in A. Finally, if x=yK for some A e A, then x is not a C7Ó in A,

since it is not a Gä in 7A, which is topologically embedded in A. Hence the G6

points in A consist of the set X—Z. However, if C is a nonvoid closed Gó set in A,

and if yK e C, then there exists v e 7A, with y=£yx, such that _v e C. But such a >>

is, by what we have just said, a G6 in A. Thus C contains a Gó point. Therefore

Mx exists, and MX = X—Z. Note that if A—Z were in fact a Borel set in A, then

Z would also be Borel in A, so that Z=Z n 7 would be Borel in 7, which by

assumption it is not. Thus Mx is not a Borel subset of A.

We also have an example of a space A such that not only Mx exists and is dense

in A, but also A— Afx is dense in A. Ours is too complicated to print here. Obviously

no point can be isolated. The example reminds one of the subject of study in the

"corona problem" [10].
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3. Inheritance properties of the minimal boundary. Suppose that for a given

space X, Mx exists, and let F be a closed subspace of X. Does MY exist? And if

MY does exist, does MY = MX n F? In this section we answer these questions. We

conclude by giving a criterion for products to have minimal boundaries.

3.1. Theorem. Let Y be an arbitrary space. Then there exists a (completely

regular Hausdorff) space X with the following properties:

1. Fç X (homeomorphically).

2. Mx exists.

3. If MY exists, then MY = Mx n Y.

Proof. Let Z=(zA)AeA, where A is an uncountable index set and 0 e A, and let

Z have the discrete topology. Let X= YxZ, and define the following as neigh-

borhoods in X, for all (y, z) e X:

1. If z^z0, then {(y, z)} is a neighborhood of itself.

2. If z = z0, then IFis a neighborhood of (y, z0) if WZ2 U, where U=(V— {y}, Z)

u {(y, zo)} for some neighborhood V of y in Y.

In order to show that we have described a topology on X, we may show that U

is a neighborhood of each of its points, for (7a neighborhood of (y0, z0). If (y, z)e U

and z^z0, then by 1, U is a neighborhood of (y, z). If y^y0 but z=z0, then since

Y is assumed to be Hausdorff, there is a neighborhood Vx of y contained in V

such that y0 $ Vx. But then (Vx, Z)^U and by the definition in 2, (V,Z) is a

neighborhood of (y, z). Thus we have a topology on X. Since Y is Hausdorff and

Z has the discrete topology, X is Hausdorff. It is straightforward to show that X

is completely regular, and we omit the proof.

Next we remark that ( F, z0) is homeomorphic to F. For U is a neighborhood of

(y, z0) if and only if [ U n ( F, z0)] 2 ( F, z0) for some neighborhood F of y in F. Thus

Y is embedded topologically in X. Toward showing that Mx exists, we note that

if z^z0, then (y, z0) is a Gi; for all ;> e F. Next, if y is a Gó in Fand if H"=i K={)>},

with Fn open in Y, then f|?-i [(F„-{.y}, Z) u fjr, z0)] = {(>>, z0)}> so that (y, z0) is

a (7,5 in X Now if y is not a G6 in F, then for any countable collection (VJ™=i

of neighborhoods for y in F, there is yxe C\^=xVn, whence (yx,Z-{z0})

= Dñ=i (Vn—{y}, Z) u (y, z0), which itself is an arbitrary G6 in Jif containing

(y,z0). However, every element of (yx,Z-{z0}) is discrete, so that any (not

necessarily closed) nonvoid G6 in X which contains (y, z0) also contains a Gô

point. Thus A7X exists. From our proof we see that if MY also exists, then

Mx n Y=MY.

It is interesting to observe that X is never compact. To prove it, let y0e Y and

let U=(Y-{y0},Z)\J(y0,z0), so that U is open in X. But then X-U=

(y0, Z—{z0}), which is an uncountable discrete set, so that A'cannot possibly be

compact. The same reasoning shows that X is not even locally compact.

Inasmuch as Fis embedded as a closed subspace of X, Theorem 3.1 gives the

answer "not always" to the first question at the beginning of this section. However,
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Theorem 3.1 does not settle the second question. Trivially the answer to it is again

"not always." For let A be such that Mx exists and MX^X, and let y e X—Mx

and Y={y}. Then MY={y} and Mx n 7=0. Perhaps this is not a satisfying

answer. A more fruitful settlement of the question is contained in

3.2. Theorem. Let Y be an arbitrary space. Then there exists a compact Hausdorff

space with the following properties:

1. 7s A (homeomorphically).

2. Mx exists.

3. Mxn 7=0.

Proof. For the time being, assume that 7 is compact. Define A= 7xZ as a set,

just as in Theorem 3.1. Let the following be neighborhoods in A, for the arbitrary

element (y, z) :

1. If z^z0, then {(y, z)} is a neighborhood of itself.

2. If z = z0, then IF is a neighborhood of (y, z0) if W^. U, where

W =[(V, Z-finite subset of A] u {(y, z0)},

for some neighborhood V of y in 7.

Indeed this describes a topology on A, as is easy to check, and once again, since

7 is Hausdorff and Z has the discrete topology, Ais Hausdorff too. Now we show

that Ais compact—whence completely regular. Let (rVy)yer be an open cover of A.

For each (y, z0) in A, there is an open neighborhood Uy of y in 7 such that

(y, z0) e [(Uy,Z) — finite set]^W„ for some yeT (depending of course on the

chosen y). Since 7 is assumed to be compact, there are yx,..., yn, such that

U/S = i Uyk covers 7. But then A— U£ = i [(Uyk, Z) —finite set] is a finite point set.

Therefore A can be covered by a finite subcollection of (yVy)Yer. This means A is

compact.

Now we show that Mx exists. If z^z0, then (y, z) is isolated, so is a Gb point.

Next, let (y, z0) be an element of any Gd set C\ñ=i Wn, where each IFn is open in A.

Then there are Fn, « = 1, 2,..., open in 7, such that (y, z0) e [(y, Z) — countable set]

(J{(y,za)}^Ç\Z=x[(Vn,Z)-countable set]^C]^xWn. But [(y,Z)-countable

set] contains an uncountable collection of isolated points. Thus D"=i ^n contains

G6 points. It is then apparent that Mx exists. With a simple calculation we find that

7 is homeomorphic to (Y,z0); by construction (Y, z0) has no Gó points in A.

Thus Mx n 7= 0 —provided that 7 is compact. Now let 7 be an arbitrary

completely regular Hausdorff space, and let ß Y be the Stone-Cech compactification

of 7. Finally, let X=ßYxZ, and put the topology defined above on A, with

respect to ß Y and Z. Then Ais compact and Mx exists. Furthermore, ß 7 is homeo-

morphic to (ß Y, z0), so that 7 is homeomorphic to ( 7, z0), with the result that 7

is embedded topologically in A. Once again Mx n 7= 0, and the proof is complete.

Although Theorems 3.1 and 3.2 give a negative answer to the questions at the
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outset of this section, we now show that under certain circumstances the answers

to both questions are yes.

3.3. Lemma. If Y is a subspace of X, and if both Mx and MY exist, then

MY = MX n F.

Proof. This follows immediately from Corollary 2.8 and from the observation

that a point Gô in X which is in F is a point G6 in F.

3.4. Theorem. Let X be an arbitrary space, and Y a nonvoid Gó in X. If Mx

exists, then MY exists and MY = Mx n Y.

Proof. If A is a nonvoid closed G6 in Y, then A is at least a Gô in X, so that by

Lemma 2.4, there is an/e CS(X) such that Bf^A. By hypothesis and by Theorem

2.7, Bf contains a G6 point y (in X). Then y is a Gö in Y, and therefore MY exists.

Since G6 points in the G6 subspace F are G6 points in X, MY = Mx n Y.

Theorem 3.4 tells us that some of the closed subspaces—at least those which are

closed G6 sets—inherit minimal boundaries. So also for all open subspaces. In the

final theorem of this section, we characterize those product spaces which have

minimal boundaries, in terms of their coordinate spaces.

3.5. Theorem. Let A be an index set, and for each A g A, let YA be a nontrivial

topological space. Let X= FIasa Fa, endowed with the product topology. Then X has

a minimal boundary if and only if A is at most countable and for each A e A, YK

has a minimal boundary. If X has a minimal boundary, then Mx = \~\KeA MYa.

Proof. If A is uncountable, then no points of the product space X are Gö

points, so that there can be no minimal boundary. Next, if A is at most countable,

but some coordinate space, say Yx, has no minimal boundary, then there is a

nonvoid closed G6 set Ax in Yx without any Gó points. Let Ak= Yk for all k-tl,

and let A = YlkeA Ak. Then A is a nonvoid closed Gô in X. Since the projection of a

G6 point in X onto any of its coordinates must be a G6 point in the coordinate

space, we find that A has no G6 points in X. Thus in this case Mx fails to exist.

We have remaining the case in which A is at most countable and each Yk has a

minimal boundary. We will show that Mx exists and Mx = YJkeA MYk. A routine

check shows that if for each k, yk is a Gd in Yk, then x = (yk)keA is a G6 in X. Now

let A be a nonvoid closed G6 in X. We will find a Gö point x in A. To this end, note

that A = (\û~i Wn, where W.-Ufti IL6a Wn>kM and where each Wn.kJ is at

least open in Yk. Fix y=(yk)keA in A. Then for each n, there exists /„ with in^mn,

such that rifcsA ̂ n.k.in contains y. But for each « and k, there is a continuous

function fnk such that/,*: Ffc^[0, I/2n], fnk(yk) = l/2n and fnk(Yk- WnMn)=0.

Define/fc = 2?= i/„fc, so that fkeCs(Yk) and P^O^i ^.v By hypothesis,

there is a G6 point xk in Bfk, for each k. Let x = (xk)keA. Then by our remark above,

x is a Gd in X, and x e n*eA Bfk S f|» = i n*6A Wn.M. £ f\œ=i *Fn = ,4. Therefore

Afx exists. Evidently Mx=\~\keA MYk.
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4. Minimal boundaries for compactifications.

4.1. Theorem. Let X0 be a locally compact, noncompact Hausdorff space, and

let X be the one-point (xx) compactification of X0. Then Mx exists if and only if

MXo exists, and if they exist, then Mx = MXo U {xœ} if and only if X is c-compact.

Proof. Since A is Hausdorff, A0 is open in A, so we can invoke Theorem 3.4 to

show that if Mx exists, then MXo exists. Now we prove the reverse implication.

First we note that if x is a Gô point in A0, then it is a G6 in A since A0 is open in X.

Assume that MXo exists, and let A be a nonvoid closed Gô subset of A. Then

A0=A n A0 is a closed G6 in A0. If A0= 0, then A={xx}, which is thus a Gô

point in A. Otherwise A0^ 0, and by the hypothesis, there is a G6 point y in A0.

Then y is a Gd point in A, with the result that Mx exists. By the definition of the

topology on one-point compactification, xx is a G6 point if and only if A is

(j-compact, so that the last statement of the theorem is a consequence of Corollary

2.8.

We mention that if A0 is the space of ordinals less than the first uncountable,

with the order topology, then A is the space of ordinals less than or equal to the

first uncountable, and Mx = X0 = MXo, while if A0 = (0, 1] with the usual topology,

then A=[0, 1], and Mx = [0, 1]^(0, l] = MXa.

Next we turn to the Stone-Cech compactification ßX of an arbitrary completely

regular Hausdorff space A. This compactification always exists for such A [3,

p. 86].

4.2. Lemma. Let X be pseudo-compact. Then x is a Ga in X if and only if x is a

Gb in ßX.

Proof. If x e /SAand is a Gó, then x e X, since ßX— X has no G6 points [3, p. 132].

But this means that x is a G6 in A. On the other hand, if x e X is a Gô, then surely

x is a G6 in ßX, since otherwise the Hausdorff topology on ßX would yield a

function fe Cs(ßX) such that B¡ n X= 0. But since A is pseudocompact, this is

impossible.

4.3. Theorem. Assume that X is not compact. We have the following:

1. If X is not pseudo-compact, then MßX does not exist.

2. If X is pseudo-compact, then Mex exists if and only if Mx exists, and in this

case, Mex = Mx.

Proof. 1. If A is not pseudo-compact, then there is an unbounded function «

on A such that « is continuous. Let g=max (I, «), /= l/g, so that/: A-> (0, 1]

is continuous, and [f(X)]' = [0, 1]. Letfx be the continuous extension off to ßX.'

Then (1 -fx) e Cs(ßX) and £Wl n A=0. However, no point in ßX-X can

ever be a G¿. Thus the closed nonempty Gó set Bx_fl in ßX has no Gö point, and

ßX therefore has no minimal boundary.

2. Assume that Mx exists, and let A be a nonvoid closed Gó in ßX. Then A n X



1968] THE MINIMAL BOUNDARY OF C(X) 313

is a nonvoid closed G6 in A, so by hypothesis contains a point which is a Gô in A.

But such points are G6 in ßX, by Lemma 4.2. Hence ßX has a minimal boundary.

Conversely, assume that MßX exists, and let A be a nonvoid closed Gó in A. By

Lemma 2.4 there is a function fe CS(X) such that Bf^A. Iff is its continuous

extension to ßX, then Bfl n X^A, and by hypothesis there exists a G6 point x in

Bfl. However, x cannot be in ßX— X since x is a G¿, so that xe A and is a C7d in A.

Therefore M/ exists. Furthermore, since ßX— A" has no C7Ó points, Corollary 2.8

provides us with the final equality MBX = Mx.

One of the consequences of Theorem 4.3 is that if A, Q, and R are the spaces of

integers, rationals, and reals, respectively, under their ordinary topologies, then

MßN, MeQ, and MßR do not exist, although MN = N, MQ= Q, and MR = R.

For an arbitrary space 7, let Cb( 7) consists of all real-valued bounded continuous

functions on 7, with supremum norm and pointwise multiplication. Henceforth

assume that A is compact and that Mx exists. We ask under what conditions each

function in Cb(Mx) has a unique continuous extension to A. In other words, when

are Cb(Mx) and C(A) naturally identifiable ?

4.4. Theorem. The following are equivalent:

1. Cb(Mx) is identifiable with C(X).

2. Mx is pseudo-compact and ßMx = X.

3. Mx is pseudo-compact andfeC(MX) is uniformly continuous with respect

to the uniform structure on X restricted to Mx.

Proof. If ßMx ^ X, then by the Stone-Cech compactification theorem, Cb(Mx)

is not identifiable with C(A). Furthermore, if Cb(Mx) and C(A) are identifiable,

then [2, Theorem IV.6.26] shows that A and ßMx are homeomorphic, so that

MßMx exists. But then Theorem 4.3 tells us that Mx is pseudo-compact. Hence 1

implies 2. The converse is true by the Stone-Cech compactification theorem.

Next we show that 2 implies 3. If/e Cb(Mx) = C(MX), then let/0 be the continuous

extension of/to ßMx = X. Since X is compact,/) is uniformly continuous on A,

so /is uniformly continuous on the restricted uniformity on Mx. Hence 2 implies

3. Conversely, assume that 3 holds, and let fe C(MX). Then / is uniformly con-

tinuous with respect to the given uniform structure on Mx, so has a unique con-

tinuous extension /, to the compact space A by [6, Theorem 6.26]. But this is

tantamount to the statement that X=ßMx. Thus 3 implies 2.

Let us note that there is at least one nontrivial example which satisfies the

conditions of Theorem 4.4: if A is the space of ordinals less than or equal to the

first uncountable, with its order topology, then ßMx = A and Mx is pseudo-compact,

and Mxi=X, and Cb(Mx) is identifiable with C(A). However, A may be such that

Mx is pseudo-compact without Cb(Mx) and C(A) being identifiable. To create

such a space, we let 7 and Z each be distinct copies of the ordinals less than or

equal to the first uncountable, endowed with the order topology, and let the first

uncountables be denoted by y0 and z0 in 7 and Z respectively. Assume that y0=z0.
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Let X= F u Z, with neighborhoods of any y <y0 and any z<z0 just the neighbor-

hoods they normally have in F and Z respectively. Let the neighborhoods of y0 = z0

be the union of neighborhoods of y0 in Y and z0 in Z Then Mx = X—{y0}

= X—{z0}, and Mx inherits its pseudo-compactness from Y and Z. However,

ßMx¥=X. For take /: Mx -> [0, 1] defined by /(F-{>>o})=0 and/(Z-{z0})=l.

Then / is continuous on Mx and has no continuous extension to X, so that

ßMx# X. However, ßMx is the two-point compactification of ( Y—{y0}) \J(Z—{z0}).

By [2, Theorem IV.6.26], ßMx and X are not homeomorphic; therefore Cb(Mx)

and C(X) are not identifiable.
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