The monotone union property of manifolds
HTML articles powered by AMS MathViewer
- by Lawrence S. Husch
- Trans. Amer. Math. Soc. 131 (1968), 345-355
- DOI: https://doi.org/10.1090/S0002-9947-1968-0221484-4
- PDF | Request permission
References
- J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
- James W. Alexander, The combinatorial theory of complexes, Ann. of Math. (2) 31 (1930), no. 2, 292–320. MR 1502943, DOI 10.2307/1968099
- R. H. Bing, An alternative proof that $3$-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37–65. MR 100841, DOI 10.2307/1970092
- E. M. Brown and R. H. Crowell, Deformation retractions of 3-manifolds into their boundaries, Ann. of Math. (2) 82 (1965), 445–458. MR 182012, DOI 10.2307/1970707
- Morton Brown, The monotone union of open $n$-cells is an open $n$-cell, Proc. Amer. Math. Soc. 12 (1961), 812–814. MR 126835, DOI 10.1090/S0002-9939-1961-0126835-6
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR 0146828
- C. H. Edwards Jr., Concentric solid tori in the $3$-sphere, Trans. Amer. Math. Soc. 102 (1962), 1–17. MR 140091, DOI 10.1090/S0002-9947-1962-0140091-X
- C. H. Edwards Jr., Concentricity in $3$-manifolds, Trans. Amer. Math. Soc. 113 (1964), 406–423. MR 178459, DOI 10.1090/S0002-9947-1964-0178459-X
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120–167. MR 0140099 P. J. Hilton and S. Wylie, Homology theory, Cambridge Univ. Press, New York, 1962.
- J. F. P. Hudson and E. C. Zeeman, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719–745. MR 166790, DOI 10.1112/plms/s3-14.4.719
- Shin’ichi Kinoshita, On Fox’s property of a surface in a $3$-manifold, Duke Math. J. 33 (1966), 791–794. MR 203720
- Kyung Whan Kwun, Open manifolds with monotone union property, Proc. Amer. Math. Soc. 17 (1966), 1091–1093. MR 214043, DOI 10.1090/S0002-9939-1966-0214043-4 W. Magnus, A. Karass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- J. Milnor, A unique decomposition theorem for $3$-manifolds, Amer. J. Math. 84 (1962), 1–7. MR 142125, DOI 10.2307/2372800
- Edwin E. Moise, Affine structures in $3$-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96–114. MR 48805, DOI 10.2307/1969769 M. H. A. Newman, On the superposition of n-dimensional manifolds, J. London Math. Soc. 2 (1927), 56-64. M. H. A. Newman and J. H. C. Whitehead, On the group of a certain linkage, Quart. J. Math. Oxford Ser. (2) 8 (1937), 14-21.
- Jakob Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), no. 1, 189–358 (German). MR 1555256, DOI 10.1007/BF02421324
- C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc. (3) 7 (1957), 281–299. MR 87944, DOI 10.1112/plms/s3-7.1.281
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI 10.2307/1970113
- Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286 (German). MR 72482, DOI 10.1007/BF02392437
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 B. L. van der Waerden, Modern algebra, Ungar, New York, 1953. J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser. (2) 6 (1935), 364-366.
- Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257–309 (German). MR 6510, DOI 10.1007/BF02565622
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 131 (1968), 345-355
- MSC: Primary 54.78; Secondary 57.00
- DOI: https://doi.org/10.1090/S0002-9947-1968-0221484-4
- MathSciNet review: 0221484