The word problem and consequences for the braid groups and mapping class groups of the -sphere
Authors:
Richard Gillette and James Van Buskirk
Journal:
Trans. Amer. Math. Soc. 131 (1968), 277-296
MSC:
Primary 20.10; Secondary 55.00
DOI:
https://doi.org/10.1090/S0002-9947-1968-0231894-7
MathSciNet review:
0231894
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
- [2] E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126. MR 19087, https://doi.org/10.2307/1969218
- [3] F. Bohnenblust, The algebraical braid group, Ann. of Math. (2) 48 (1947), 127–136. MR 19088, https://doi.org/10.2307/1969219
- [4] Wei-Liang Chow, On the algebraical braid group, Ann. of Math. (2) 49 (1948), 654–658. MR 26050, https://doi.org/10.2307/1969050
- [5] D. Dahm, A generalization of braid theory, Ph.D. Thesis, Princeton Univ., Princeton, N. J., 1962.
- [6] Edward Fadell, Homotopy groups of configuration spaces and the string problem of Dirac, Duke Math. J. 29 (1962), 231–242. MR 141127
- [7] Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. MR 141126, https://doi.org/10.7146/math.scand.a-10517
- [8] Edward Fadell and James Van Buskirk, The braid groups of 𝐸² and 𝑆², Duke Math. J. 29 (1962), 243–257. MR 141128
- [9] R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119–126. MR 150755, https://doi.org/10.7146/math.scand.a-10518
- [10] Wilhelm Magnus, Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann. 109 (1934), no. 1, 617–646 (German). MR 1512913, https://doi.org/10.1007/BF01449158
- [11] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- [12] J. A. H. Shepperd, Braids which can be plaited with their threads tied together at each end, Proc. Roy. Soc. London Ser. A 265 (1961/62), 229–244. MR 133125, https://doi.org/10.1098/rspa.1962.0006
- [13] J. Van Buskirk, Braid groups of compact 2-manifolds with elements of finite order, Ph.D. Thesis, Univ. of Wisconsin, Madison, 1962.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 20.10, 55.00
Retrieve articles in all journals with MSC: 20.10, 55.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1968-0231894-7
Article copyright:
© Copyright 1968
American Mathematical Society