Recursive pseudo-well-orderings
HTML articles powered by AMS MathViewer
- by Joseph Harrison
- Trans. Amer. Math. Soc. 131 (1968), 526-543
- DOI: https://doi.org/10.1090/S0002-9947-1968-0244049-7
- PDF | Request permission
References
- S. Feferman, An $\omega$-model for the hyperarithmetic comprehension axiom in which the $\Sigma _1^1$ axiom of choice fails, Proc. Internat. Congr. Math., Moscow, 1966.
- Solomon Feferman, Classifications of recursive functions by means of hierarchies, Trans. Amer. Math. Soc. 104 (1962), 101–122. MR 142453, DOI 10.1090/S0002-9947-1962-0142453-3 —, Constructive pseudo-well-orderings, Notices Amer. Math. Soc. 9 (1962), 136. —, Some applications of the notions of forcing and generic sets, Fund. Math. 16 (1965), 383-390.
- S. Feferman and C. Spector, Incompleteness along paths in progressions of theories, J. Symbolic Logic 27 (1962), 383–390. MR 172793, DOI 10.2307/2964544
- R. O. Gandy, On a problem of Kleene’s, Bull. Amer. Math. Soc. 66 (1960), 501–502. MR 122724, DOI 10.1090/S0002-9904-1960-10518-6
- R. O. Gandy, Proof of Mostowski’s conjecture, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 571–575 (English, with Russian summary). MR 126383 J. Harrison, Further results on ${O^\ast }$, Notices Amer. Math. Soc. 12 (1965), 604. —, Extensions of the hyperarithmetic hierarchy, Notices Amer. Math. Soc. 12 (1965), 806. —, Pairs of hyperdegrees without a greatest lower bound, Notices Amer. Math. Soc. 13 (1965), 623. —, Some applications of recursive pseudo-well-orderings, Ph.D. Thesis, Stanford Univ., Stanford, Calif., 1966.
- S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals. II, Amer. J. Math. 77 (1955), 405–428. MR 70595, DOI 10.2307/2372632 G. Kreisel, Some axiomatic results on second order arithmetic, Seminar notes, Stanford Univ., Stanford, Calif., 1963.
- G. Kreisel, The axiom of choice and the class of hyperarithmetic functions, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 307–319. MR 0140418
- C. Spector, Hyperarithmetical quantifiers, Fund. Math. 48 (1959/60), 313–320. MR 120147, DOI 10.4064/fm-48-3-313-320
- Clifford Spector, Measure-theoretic construction of incomparable hyperdegrees, J. Symbolic Logic 23 (1958), 280–288. MR 112830, DOI 10.2307/2964288
- Clifford Spector, Recursive well-orderings, J. Symbolic Logic 20 (1955), 151–163. MR 74347, DOI 10.2307/2266902 S. K. Thomason, The forcing method and the upper semilattice of hyperdegrees, Ph.D. Thesis, Cornell Univ., Ithaca, N. Y., 1965.
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 131 (1968), 526-543
- MSC: Primary 02.77
- DOI: https://doi.org/10.1090/S0002-9947-1968-0244049-7
- MathSciNet review: 0244049