An infinite subalgebra of $\textrm {Ext}_{A} (Z_{2}, Z_{2})$
HTML articles powered by AMS MathViewer
- by Mark Mahowald and Martin Tangora
- Trans. Amer. Math. Soc. 132 (1968), 263-274
- DOI: https://doi.org/10.1090/S0002-9947-1968-0222887-4
- PDF | Request permission
References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20β104. MR 141119, DOI 10.2307/1970147
- Mark Mahowald and Martin Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967), 349β369. MR 214072, DOI 10.1016/0040-9383(67)90023-7 J. P. May, The cohomology of restricted Lie algebras, etc., Dissertation, Princeton Univ., Princeton, N. J., 1964. M. Tangora, On the cohomology of the Steenrod algebra, Dissertation, Northwestern Univ., Evanston, Ill., 1966. β, Retrieving products in Ext, (to appear).
- Nobuo Shimada and Akira Iwai, On the cohomology of some Hopf algebras, Nagoya Math. J. 30 (1967), 103β111. MR 215896, DOI 10.1017/S0027763000012393
- A. Zachariou, A subalgebra of $\textrm {Ext}_{A}\,^{\ast \ast } (Z_{2}, Z_{2})$, Bull. Amer. Math. Soc. 73 (1967), 647β648. MR 214060, DOI 10.1090/S0002-9904-1967-11808-1
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 132 (1968), 263-274
- MSC: Primary 55.34
- DOI: https://doi.org/10.1090/S0002-9947-1968-0222887-4
- MathSciNet review: 0222887