Embeddability of discrete time simple branching processes into continuous time branching processes
HTML articles powered by AMS MathViewer
- by Samuel Karlin and James McGregor
- Trans. Amer. Math. Soc. 132 (1968), 115-136
- DOI: https://doi.org/10.1090/S0002-9947-1968-0222966-1
- PDF | Request permission
References
- I. N. Baker, Fractional iteration near a fixpoint of multiplier $1$, J. Austral. Math. Soc. 4 (1964), 143–148. MR 0165080
- T. E. Harris, Some mathematical models for branching processes, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 305–328. MR 0045331
- Theodore E. Harris, The theory of branching processes, Die Grundlehren der mathematischen Wissenschaften, Band 119, Springer-Verlag, Berlin; Prentice Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0163361
- Eri Jabotinsky, Analytic iteration, Trans. Amer. Math. Soc. 108 (1963), 457–477. MR 155971, DOI 10.1090/S0002-9947-1963-0155971-X S. Karlin, Total positivity and applications, Stanford Univ. Press, Stanford, California, 1967.
- Samuel Karlin and James McGregor, Spectral representation of branching processes. II. Case of continuous spectrum, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 34–54. MR 205339, DOI 10.1007/BF00532811
- Samuel Karlin and James McGregor, Properties of the stationary measure of the critical case simple branching process, Ann. Math. Statist. 38 (1967), 977–991. MR 211477, DOI 10.1214/aoms/1177698766
- Samuel Karlin and James McGregor, Embedding iterates of analytic functions with two fixed points into continuous groups, Trans. Amer. Math. Soc. 132 (1968), 137–145. MR 224790, DOI 10.1090/S0002-9947-1968-0224790-2 G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. 1, Supplement (1884), 2-41. T. Kurtz, Some topics in branching processes, Ph.D. Dissertation, Stanford Univ., Stanford, Calif., 1967.
- G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203–258. MR 107016, DOI 10.1007/BF02559539 E. C. Titchmarsh, The theory of functions, Oxford Univ. Press, New York, 1939.
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 132 (1968), 115-136
- MSC: Primary 60.67
- DOI: https://doi.org/10.1090/S0002-9947-1968-0222966-1
- MathSciNet review: 0222966