On dimension of support for stochastic processes with independent increments
HTML articles powered by AMS MathViewer
- by Howard H. Stratton
- Trans. Amer. Math. Soc. 132 (1968), 1-29
- DOI: https://doi.org/10.1090/S0002-9947-1968-0226723-1
- PDF | Request permission
References
- A. M. Bruckner and E. Ostrow, Some function classes related to the class of convex functions, Pacific J. Math. 12 (1962), 1203–1215. MR 148822
- S. D. Chatterji, Certain induced measures and the fractional dimensions of their “supports”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 184–192 (1964). MR 174691, DOI 10.1007/BF00534907
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Co., Inc., Cambridge, Mass., 1954. Translated and annotated by K. L. Chung. With an Appendix by J. L. Doob. MR 0062975
- Philip Hartman and Aurel Wintner, On the infinitesimal generators of integral convolutions, Amer. J. Math. 64 (1942), 273–298. MR 6635, DOI 10.2307/2371683 H. Rubin, Supports of infinitely divisible distributions, Tech. Rep. No. RM-108, HR-10, Michigan State Univ., Dept. of Statistics, East Lansing, Mich., 1963.
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- Howard G. Tucker, On a necessary and sufficient condition that an infinitely divisible distribution be absolutely continuous, Trans. Amer. Math. Soc. 118 (1965), 316–330. MR 182061, DOI 10.1090/S0002-9947-1965-0182061-4
Bibliographic Information
- © Copyright 1968 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 132 (1968), 1-29
- MSC: Primary 60.40
- DOI: https://doi.org/10.1090/S0002-9947-1968-0226723-1
- MathSciNet review: 0226723