ERGODIC THEORY AND BOUNDARIES

BY

M. A. AKCOGLU AND R. W. SHARPE

1. Introduction. Let T be a conservative positive contraction on the L_1 space of a finite measure space (X, \mathcal{F}, μ). A theorem of Chacon [5], [2] shows that T defines a sub σ-field \mathcal{I} of \mathcal{F}, consisting of invariant subsets of X. The ratio ergodic limits are measurable with respect to \mathcal{I} [5], [2] and the class of these limits contains $L_\infty(X, \mathcal{I}, \mu)$, which can be considered as the invariant functions of the adjoint transformation [2].

The main purpose of the present paper is to show that any positive contraction on $L_1(X, \mathcal{F}, \mu)$ behaves, asymptotically, like a conservative transformation (Theorems 3 and 4) and that the invariant functions of the adjoint transformation can be approximated by the ratio ergodic limits.

Intuitively, a ratio ergodic limit corresponds to the result of an averaging process of different values of a function. It is then natural to consider these limits as functions that are smooth with respect to the asymptotic behaviour of the transformation. This leads (Theorem 6) to a Martin-Doob type representation [12], [8] of invariant functions as the L_∞ functions of a compact Hausdorff space \mathcal{M} with a Baire measure. The topology on \mathcal{M} is just strong enough to make the ergodic limits to correspond to continuous functions. As an example we consider a transformation of Feller [10] and show that for this case the above representation is identical with the Poisson representation of harmonic functions in the unit disk.

We also consider the possibility of joining X and \mathcal{M}, convergence of measures to \mathcal{M} in $X \cup \mathcal{M}$ (Theorem 7), and a relation (Lemma 9) between the Feller and Martin-Doob type representations, corresponding to a result of Feldman [9].

2. Preliminaries. Let (X, \mathcal{F}, μ) be a finite measure space and let $L_p = L_p(X, \mathcal{F}, \mu)$, $1 \leq p \leq \infty$ be the usual Banach spaces, and L_∞^\ast denote the positive cone of L_∞. Let $T: L_1 \to L_1$ be a positive linear contraction and $U: L_\infty \to L_\infty$ be its dual. For $\alpha \in L_\infty$ define $T_\alpha: L_1 \to L_1$ as $T_\alpha f = \alpha f + T((1-\alpha)f, f \in L_1$, and let U_α be its dual. If χ_E is the characteristic function of $E \in \mathcal{F}$ we write T_E and U_E instead of T_{χ_E} and U_{χ_E}.

The following partial ordering of L_1^\ast is similar to that of Bishop and deLeeuw given in [3].

Definition 1. For $f, g \in L_1^\ast$, $f \leq g$ if and only if there exist an integer $n \geq 1$ and $\alpha_1, \ldots, \alpha_n \in L_\infty$ such that $0 \leq \alpha_i \leq 1$ for $i = 1, \ldots, n$ and $g = T_{\alpha_n} \cdots T_{\alpha_1} f$.

This relation is reflexive and transitive and $f \leq g$ implies $\|f\|_1 \geq \|g\|_1$. Also, an
induction argument shows that if \(f < g \) then there exists an integer \(n \geq 1 \) such that \(g < T^n f \). Hence \(\{ g \in L^+ \mid g > f \} \) is (upward) directed by \(< \).

Definition 2. For \(E \in \mathcal{F}, f \in L^+_1 \) let

\[
\Psi_E f = \sup_{g > f} \int_E g \, d\mu, \quad \Theta_E f = \lim_{g \nearrow f} \Psi_E g.
\]

Note that \(\Theta_E f = \lim_{n \to \infty} \Psi_E T^n f \).

Lemma 1. The limits \(\psi_E = \lim_{n \to \infty} U^{\infty}_E f \) and \(\theta_E = \lim_{n \to \infty} U^n \psi_E \) both exist (a.e.) and satisfy

\[
\Psi_E f = \int \psi_E f \, d\mu, \quad \Theta_E f = \int \theta_E f \, d\mu.
\]

Proof. By induction, \(U^{\infty}_E \uparrow \) and \(U^n \psi_E \downarrow \), so the limits exist. Now if \(f \in L^+_\infty \) satisfies

\[
(*) \quad \chi_E Uf \leq \chi_E f, \quad \chi_E^c Uf \geq \chi_E^c f
\]

with \(E^c = X - E \), then for all \(\alpha \in \mathbb{L}_0, 0 \leq \alpha \leq 1 \), we have

\[
U_{\alpha}f = \alpha f + (1 - \alpha) Uf \leq \chi_E f + \chi_E^c Uf = U_E f.
\]

Since, by induction, \(U^{\infty}_E \) satisfies \((*)\) for all \(n \geq 0 \), we get, again by induction, \(U_{a_n} \cdots U_{a_1} \chi_E \leq U^{\infty}_E \), and hence \(\Psi_E f = \int \psi_E f \, d\mu \). The final part follows from the definition (cf. also [4] and [2]).

Definition 3. For \(E, F \in \mathcal{F} \), let

\[
\psi_{EF} = \psi_E + \psi_F - \psi_{E \cup F}, \quad \theta_{EF} = \theta_E + \theta_F - \theta_{E \cup F}.
\]

\(\Psi_{EF}, \Theta_{EF} \) are the functionals on \(L^+_1 \) defined by the \(L^\infty \) functions \(\psi_{EF}, \theta_{EF} \).

We note that \(\psi_{EF} \) and \(\theta_{EF} \) are monotone and subadditive in each index. This follows easily from the following general result, which will be useful to obtain other relations between these set functions (cf. [7]).

Lemma 2. If \(a_i \) is real and \(A_i \in \mathcal{F} \) for \(i = 1, \ldots, n \) and \(A = \bigcup_{i=1}^n A_i \), then \(\chi_A \sum_{i=1}^n a_i \psi_{A_i} \geq 0 \) implies \(\sum_{i=1}^n a_i \psi_{A_i} \geq 0 \) and \(\sum_{i=1}^n a_i \theta_{A_i} \geq 0 \).

Proof. If \(f \in L^+_1 \) and \(E \subseteq F, E, F \in \mathcal{F} \), then by induction: \(\chi_{E^c} T^f f \leq \chi_{E^c} T^E f \).

Hence

\[
0 \leq \int_{E^c} \psi_{E} T^f f \, d\mu \leq \int_{E^c} \psi_{E} T^E f \, d\mu \rightarrow 0
\]
as \(n \to \infty \). Now

\[
\int \psi E f \, d\mu = \int \psi E X F f \, d\mu + \int \psi E X F^* f \, d\mu = \int \psi E X F f \, d\mu + \int \psi E T E X F f \, d\mu = \int \psi E f \, d\mu
\]

and hence \(\lim_{n \to \infty} \int \psi E T E f \, d\mu = \int \psi E f \, d\mu \). Using this for the case of \(A_i \subseteq A \), \(i = 1, \ldots, n \), we get

\[
0 \leq \sum_{i=1}^{n} a_i \int_{A} \psi E A_i f \, d\mu \to \sum_{i=1}^{n} a_i \int_{A} \psi E f \, d\mu
\]
as \(n \to \infty \), which proves the first assertion. Since \(U \) is positive, the remainder follows.

Lemma 3. If \(\psi E \leq a \psi E \) then \(\theta E \leq a \theta E \).

Proof. From the proof of the previous lemma we have that, for \(f \in L^1 \),

\[
\lim_{n \to \infty} \int_{E} \theta E T E f \, d\mu = 0.
\]

Hence

\[
\int \theta E f \, d\mu = \int \theta E T E f \, d\mu = \lim_{n \to \infty} \int_{E} \theta E T E f \, d\mu = \alpha \lim_{n \to \infty} \int_{E} T E f \, d\mu \geq \alpha \int \psi E f \, d\mu.
\]

Finally we prove the following.

Lemma 4. For \(E, F \in \mathcal{F} \), \(\|\psi E\|_\infty = \|\psi E \psi E\|_\infty = 0 \) or \(1 \) and \(\|\theta E\|_\infty = \|\psi E \psi E\|_\infty = \|\xi E \psi E\|_\infty = 0 \) or \(1 \).

Proof. For \(g \in L^1 \), as \(n \to \infty \), \(0 \leq \Theta E (\psi E T E g) \leq \psi E T E g \to 0 \) as in the proof of Lemma 2. Hence the decomposition \(\Theta E F = \Theta E T E F = \Theta E (\psi E T E g) + \Theta E (\psi E T E g) \) shows that \(\|\theta E\|_\infty = \|\psi E \psi E\|_\infty \). Now, for \(n, m \geq 1 \),

\[
\Theta E F = \Theta E T E T E^* F = \lim_{m \to \infty} \lim_{n \to \infty} \|\theta E\|_\infty \|\psi E T E T E^* F\|_1 \leq \|\psi E T E T E^* F\|_1 \leq \|\psi E T E T E^* F\|_1 \leq \psi E T E T E^* F
\]

which completes the proof of the first part, since \(\|\theta E\|_\infty \leq 1 \). For the second part, we have, if \(g \in L^1 \), \(0 \leq \Theta E F (\psi E T E g) \leq \Theta E (\psi E T E g) \to 0 \) as \(n \to \infty \) which shows that \(\|\theta E\|_\infty = \|\psi E \psi E\|_\infty \). Now

\[
\Theta E F - \Theta E F (\psi E T E g) = \Theta E (\psi E T E g) \leq \Theta E \vee F (\psi E T E g) \leq \|\psi E T E T E^* F\|_1 \leq \psi E T E T E^* F
\]
thus, \(\Theta_E^g \leq \lim_{n \to \infty} \Theta_{E \cup F}(T_E^g) \leq Y^g_E. \) Replacing \(g \) by \(T_n^g \) and letting \(m \to \infty \) we get
\[
\Theta_E^g = \lim_{m \to \infty} \lim_{n \to \infty} \Theta_{E \cup F}(T_{E^m}^g).
\]
Next, consider
\[
\Theta_E^f(T_{E^m}^g) = (\Theta_E + \Theta_F - \Theta_{E \cup F})(T_{E^m}^g)
\]
and let \(n \to \infty \) to get
\[
\Theta_E^g = \Theta_E^g + \lim_{n \to \infty} \Theta_F(T_{E^m}^g) - \lim_{n \to \infty} \Theta_{E \cup F}(T_{E^m}^g).
\]
Now, letting \(m \to \infty \) we have
\[
\Theta_E^g = \lim_{m \to \infty} \lim_{n \to \infty} \Theta_F(T_{E^m}^g).
\]
But
\[
\Theta_E^g \leq \|\Theta_E\| \lim_{m \to \infty} \lim_{n \to \infty} \|T_{E^m}^g\|
\leq \|\Theta_E\| \lim_{m \to \infty} \|W^g_E\|
\leq \|\Theta_E\| \Theta_E^g.
\]
Hence
\[
\Theta_E^g = \Theta_E^g(T_{E^m}^g)
= \lim_{m \to \infty} \lim_{n \to \infty} \Theta_E^f(T_{E^m}^g)
\leq \|\Theta_E\| \lim_{m \to \infty} \lim_{n \to \infty} \Theta_F(T_{E^m}^g)
\leq \|\Theta_E\| \Theta_E^g.
\]
This completes the proof, since \(\|\Theta_E\| \leq 1. \)

Definition 4. \(\Sigma = \{ E \in \mathcal{F} \mid \Theta_{E \cap F} = 0 \}. \)

Lemma 5. \(\Sigma \) is a field.

Proof. Let \(E, F \in \Sigma \) and \(G = E \cap F. \) Then
\[
0 \leq \Theta_{E \cap F} = \Theta_{E \cap F \cup F} \leq \Theta_{E \cap F} + \Theta_{E \cap F} \leq \Theta_{E \cap F} + \Theta_{E \cap F} = 0.
\]
Thus \(G \in \Sigma. \)

Definition 5. \(\mathcal{A} \) is the \(L_\infty \)-closure of the class of \(\Sigma \)-simple functions.
We note that \(\mathcal{A} \) is a sub-Banach space of \(L_\infty. \)

Theorem 1. For a real valued function \(f \in L_\infty, \) the following conditions are equivalent:
(i) \(f \in \mathcal{A}, \)
(ii) \(\lim_{g \to g_0} \int fg \, d\mu \) exists for all \(g_0 \in L_\infty^2, \)
(iii) for all real numbers \(\alpha \) and \(\epsilon > 0, \)
\[
\Theta_{E \cap F} = 0 \quad \text{where} \quad E = \{ x \mid f(x) \leq \alpha \}, \quad F = \{ x \mid f(x) \geq \alpha + \epsilon \}.
\]
Proof. (i)⇒(ii). If \(E \in \Sigma \) then \(\theta_E + \theta_{\overline{E}} = \theta_X \); thus, for a real valued \(g_0 \in L_1^+ \),

\[
\limsup_{\theta \to \theta_0} \int_E g \, d\mu = \limsup_{\theta \to \theta_0} \int g \, d\mu - \limsup_{\theta \to \theta_0} \int_{\overline{E}} g \, d\mu = \liminf_{\theta \to \theta_0} \int_{\overline{E}} g \, d\mu.
\]

Therefore \(\lim_{\theta \to \theta_0} \int \chi_E g \, d\mu \) exists for all \(E \in \Sigma \).

Hence it exists for all \(\Sigma \)-simple functions, and thus for all \(f \in \mathcal{A} \).

(ii)⇒(iii). Suppose \(E \) and \(F \) are as in (iii) but that \(\theta_{EF} \neq 0 \). Then \(\| \theta_{EF} \|_\infty = 1 \) and for all \(\delta > 0 \) there exists \(g_0 \in L_1^+ \) with \(\| g_0 \|_1 = 1 \) and \(\int \theta_{EF} g \, d\mu \geq 1 - \delta \). Hence \(\Theta_\delta g_0 \geq 1 - \delta \) and \(\Theta_\delta g_0 \geq 1 - \delta \). Thus \(\limsup_{\theta \to \theta_0} \int_f g \, d\mu \leq (1 - \delta)(a + \epsilon) \) and \(\liminf_{\theta \to \theta_0} \int_f g \, d\mu \leq (1 - \delta)a + \delta \| f \|_\infty \). If \(\delta \) is chosen sufficiently small we see that \(\lim_{\theta \to \theta_0} \int_f g \, d\mu \) does not exist.

(iii)⇒(i). Let \(a_1 < a_2 < \cdots < a_n \) be \(n \) numbers and let \(E_i = \{ x \mid f(x) \leq a_i \} \). Now

\[
\sum_{i=1}^n \theta_{E_i} \leq \sum_{i=1}^n (\theta_{E_i} + \theta_{E_i} - \theta_X) = 1.
\]

Hence if \(E_a = \{ x \mid f(x) \leq a \} \) then \(\theta_{E_a} \neq 0 \) for only countably many \(a \)'s, and so \(f \in \mathcal{A} \).

3. Invariant functions.

Definition 6. \(\mathcal{H} = \{ f \mid f \in L_\infty, f = Uf \} \) is the class of invariant functions of \(U \).

We assume \(\mathcal{H} \neq \{0\} \).

Note that \(\mathcal{H} \) is a sub-Banach space of \(L_\infty \). Also, if \(h \in \mathcal{H} \) and \(g' \geq g \in L_1^+ \), then \(\int h g' \, d\mu = \int h g \, d\mu \) and hence \(\lim_{\delta \to 0} \int h g' \, d\mu \) exists. Thus \(\mathcal{H} \subseteq \mathcal{A} \).

If \(f \in \mathcal{A} \), then \(\lim_{n \to \infty} \int T^n g \, d\mu = \lim_{n \to \infty} \int U^* g \, d\mu \) exists for all \(g \in L_1(X, \mathcal{F}, \mu) \).

Hence the bounded sequence \(U^* f, n = 1, 2, \ldots \) has a limit \(\pi(f) \) in the \(w^* \)-topology of \(L_\infty \). Obviously the limit lies in \(\mathcal{H} \), so \(\pi : \mathcal{A} \to \mathcal{H} \) is a positive linear contraction.

Definition 7. \(\mathcal{A}_0 = \ker \pi = \{ f \in \mathcal{A} \mid w^* \lim \, U^* f = 0 \} \). Hence \(\mathcal{A}/\mathcal{A}_0 \cong \mathcal{H} \) is a canonical, isometric isomorphism.

Now \(\mathcal{A} \) is a \(C^* \)-algebra with the usual operations. We show that \(\mathcal{A}_0 \) is a closed ideal.

Theorem 2. \(\mathcal{A}_0 \) is a closed ideal in \(\mathcal{A} \).

Proof. Let \(f \in \mathcal{A}_0 \) and assume that \(f \) is real. Choose \(\epsilon > 0 \) and set \(E = \{ x \mid f(x) \geq \epsilon \} \).

We may assume \(E \in \Sigma \). Suppose \(\theta_E \neq 0 \); then for all \(\delta > 0 \), there is a \(g \in L_1^+ \) such that \(\| g \|_1 = 1 \) and \(\Theta_\delta g \geq 1 - \delta \). Hence:

\[
0 = \lim_{n \to \infty} \int_U T^n f \, g \, d\mu = \lim_{n \to \infty} \int T^n g \, d\mu \geq \epsilon \lim_{n \to \infty} \int T^n g \, d\mu - \| f \|_\infty \lim_{n \to \infty} \int T^n g \, d\mu \geq \epsilon(1 - \delta) - \| f \|_\infty \delta.
\]
Clearly, this fails for small \(\delta \), and so \(\theta_E = 0 \). Thus if \(E = \{ x \mid |f(x)| > \epsilon \} \), we have \(\theta_E = 0 \).

Now if \(h \in \mathcal{A} \), \(h \neq 0 \), set \(F = \{ x \mid |f(x)h(x)| \geq \epsilon \} \). Since \(F \subset \{ x \mid |f(x)| \geq \epsilon / \| h \|_\infty \} \), we have \(\theta_F = 0 \). Hence

\[
\lim_{n \to \infty} \int \frac{U^n(fh)g}{\mu} \leq \epsilon \lim_{n \to \infty} \int_T T^n g \, d\mu + \epsilon \| g \|_1 \quad \text{if } g \in L^+_1
\]

\[
\leq \epsilon \| g \|_1 \quad \text{for all } \epsilon > 0.
\]

Hence \(fh \in \mathcal{A}_0 \).

As a result of the lemma, we have given \(\mathcal{A}_1 \subseteq \mathcal{A}_0 \), and hence \(\mathcal{H} \) the structure of a \(C^* \)-algebra. Thus \(\mathcal{H} \) has a representation as the set of complex valued continuous functions on its maximal ideal space. This corresponds to Feller’s representation [10] of the invariant functions of certain Markov processes, and we shall refer to \(\mathcal{H}'s \) maximal ideal space as the Feller boundary.

As is known [8], [11], the Feller boundary is larger than it need be. In the next section, we obtain some properties of ratio ergodic limits, and use them to define a sub \(C^* \)-algebra \(\mathcal{F} \) of \(\mathcal{H} \), with a maximal ideal space \(\mathcal{M} \), smaller than the Feller boundary, but large enough to represent \(\mathcal{H} \) as a function algebra on \(\mathcal{M} \). This corresponds to the Martin-Doob representation [12], [8], [11] for some classes of functions, and \(\mathcal{M} \) will be referred to as the Martin-Doob boundary.

4. Properties of ratio ergodic limits. In [6] Chacon and Ornstein proved that for any \(f, g \in L^+_1 \), with \(g > 0 \), the limit:

\[
\lim_{n \to \infty} \sum_{k=1}^n \frac{T^k f}{T^k g}
\]

exists a.e. We denote the limit function by \((f/g) \). It is also known [5], [4], [1], that if \(\alpha \leq (f/g) \leq \beta \) a.e. on \(E \in \mathcal{H} \), then \(\alpha \leq \Psi_E(f) / \Psi_E(g) \leq \beta \).

Theorem 3. If \(f, g \in L^+_1 \) with \(g > 0 \), and

\[
E = \{ x \mid (f/g)(x) \leq \alpha \},
\]

\[
F = \{ x \mid (f/g)(x) \geq \alpha + \epsilon \},
\]

then \(\theta_{E,F} = 0 \), for all \(\alpha \geq 0 \) and \(\epsilon > 0 \).

Proof. If \(\theta_{E,F} \neq 0 \) then \(\| \chi_E \theta_{E,F} \|_\infty = 1 \). Let \(\delta > 0 \) and set \(E_\delta = \{ x \mid \theta_{E,F}(x) \geq 1 - \delta \} \cap E \), and similarly for \(F_\delta \). Then \(\| \chi_{E_\delta} \theta_{E,F} \|_\infty \leq \| \chi_{E_\delta} \theta_{E,F} \|_\infty \leq 1 - \delta \). Hence \(\theta_{E_\delta,F} = 0 \), and so \(\theta_{E_\delta,F} \leq \theta_{E,F} \leq \theta_{E_\delta,F} \). Now \(\Psi_{E_\delta} \geq \theta_{E_\delta,F} \geq 1 - \delta \) on \(E_\delta \cup F_\delta \). Hence \(\Psi_{E_\delta} \geq (1 - \delta) \Psi_{E_\delta} \), which by Lemma 2 yields \(\Psi_{E_\delta} \geq (1 - \delta) \Psi_{E_\delta} \). Now \((f/g) \leq \alpha \) on \(E_\delta \) yields \(\Psi_{E_\delta} f / \Psi_{E_\delta} g \leq \alpha \).

Similarly \((f/g) \geq \alpha + \epsilon \) on \(F_\delta \) implies \(\Psi_{E_\delta} f / \Psi_{E_\delta} g \geq \alpha + \epsilon \). These relations yield \(\Psi_{E_\delta} g \geq (1 - \delta)^2 (\alpha + \epsilon) \Psi_{E_\delta} g \) which is false for small \(\delta \) if \(\Psi_{E_\delta}(g) \neq 0 \). Hence \(\theta_{E,F} = 0 \).
Corollary. If \(f, g \in L_1 \) and \((f/g) \in L_\infty \), then \((f/g) \in \mathcal{A} \).

Remark. If \(T \) is conservative, then Theorem 3 corresponds to the fact that \((f/g) \) is measurable with respect to the \(\sigma \)-field of invariant sets (cf. [5], [2]).

Theorem 4. If \((f/g) \in L_\infty \), and \(h \in \mathcal{A} \), then \(\int \pi(h) f \, d\mu = \int \pi(h/(f/g)) g \, d\mu \).

Proof. Recall that \(\int \pi(h/(f/g)) g \, d\mu = \lim_{n \to \infty} \int h(f/g) T^n g \, d\mu \). We may assume \(f \) and \(h \) are real. Choose \(\varepsilon > 0 \), and let \(E_{ij} \), \(1 \leq i, j \leq k \) be a \(\Sigma \) partition of \(X \) such that

\[
\left\| h - \sum_{ij} h_{ij} \chi_{E_{ij}} \right\|_\infty < \varepsilon, \quad \left\| (f/g) - \sum_{ij} \alpha_{ij} \chi_{E_{ij}} \right\|_\infty < \varepsilon
\]

for suitable real \(h_{ij}, \alpha_{ij} \) with \(|h_{ij}| \leq \|h\|_\infty, |\alpha_{ij}| \leq \|(f/g)\|_\infty \). Now

\[
\lim_{n \to \infty} \int h(f/g) T^n g \, d\mu - \sum_{ij=1}^k h_{ij} \lim_{n \to \infty} \int E_{ij} T^n g \, d\mu = \left| \lim_{n \to \infty} \int h(f/g) T^n g \, d\mu - \sum_{ij} h_{ij} \alpha_{ij} \Theta_{E_{ij}}(g) \right| \leq \varepsilon \|g\|_1 (\|h\|_\infty + \|(f/g)\|_\infty).
\]

Let \(\delta > 0 \) be fixed and set \(E_{ij}^\prime = \{x \mid \theta_{E_{ij}}(x) \geq 1 - \delta\} \cap E_{ij} \). Then, as before, \(\theta_{E_{ij}^\prime} = \theta_{E_{ij}} \), and from Lemma 3, \(\theta_{E_{ij}^\prime} \geq (1 - \delta) \theta_{E_{ij}} \). Now \(|\alpha_{ij} - (f/g)| \leq \varepsilon \) on \(E_{ij}^\prime \) implies that \(|\alpha_{ij} - \Psi_{E_{ij}^\prime} f/\Psi_{E_{ij}^\prime} g| \leq \varepsilon \). [Here we consider only those \(E_{ij} \)'s with \(\theta_{E_{ij}} \neq 0 \).] Hence:

\[
\left| \sum_{ij} h_{ij} \alpha_{ij} \Theta_{E_{ij}} g - \sum_{\theta_{E_{ij}} \neq 0} h_{ij} \frac{\Psi_{E_{ij}^\prime} f}{\Psi_{E_{ij}^\prime} g} \Theta_{E_{ij}} g \right| \leq \varepsilon \|g\|_1 \|h\|_\infty \|f\|_1.
\]

Also:

\[
\left| \sum_{\theta_{E_{ij}} \neq 0} h_{ij} \frac{\Psi_{E_{ij}^\prime} f}{\Psi_{E_{ij}^\prime} g} \Theta_{E_{ij}} g - \sum_{ij} h_{ij} \Psi_{E_{ij}^\prime} f \right| \leq \|g\|_1 \|h\|_\infty (\|(f/g)\|_\infty + \varepsilon) k^2 \delta.
\]

Finally,

\[
\left| \sum_{ij} h_{ij} \Psi_{E_{ij}^\prime} f - \sum_{ij} h_{ij} \Theta_{E_{ij}} f \right| \leq \|h\|_\infty \|f\|_1 k^2 \delta
\]

and

\[
\left| \sum_{ij} h_{ij} \Theta_{E_{ij}} f - \lim_{n \to \infty} \int h T^n f \, d\mu \right| \leq \varepsilon \|f\|_1.
\]

Putting together all these inequalities, we conclude the result.

5. A representation for \(\mathcal{H} \).

Definition 8. \(\mathcal{B} \) is the sub-\(C^* \)-algebra of \(\mathcal{H} \) generated by the class \(\{\pi(l) \mid l \in L_\infty\} \).

Let \(\mathcal{M} \subset \mathcal{B}^* \) be the maximal ideal space of \(\mathcal{B} \) with the \(w^* \) topology induced from \(\mathcal{B}^* \). Let \(\mathcal{B} \) be the \(\sigma \)-field of Baire sets of \(\mathcal{M} \).

Note that \(\mathcal{B} \) contains the unit \(\pi(1) \) of \(\mathcal{H} \), and that \(g \in \mathcal{B} \) is invertible in \(\mathcal{B} \) if and only if it is invertible in \(\mathcal{H} \).
The C*-algebra $\mathcal{C}(\mathcal{M})$ of continuous complex valued functions on \mathcal{M} is isometrically isomorphic to \mathcal{G} under the Gelfand mapping $\sigma: \mathcal{G} \to \mathcal{C}(\mathcal{M})$. This mapping is order preserving. To see this first we need a few lemmas.

Lemma 6. If $f \in \mathcal{M}$ then $\|f\|^2 \geq |f|^2$.

Proof. We can assume that f is real. Let $g \in L^1_\mathcal{G}$ with $\|g\|_1 = 1$. Then

$$|\int fg \, d\mu| = \left|\int f \cdot T_g \, d\mu\right| \leq \left(\int |f|^2 T_g \, d\mu\right)^{1/2} \left(\int T_g \, d\mu\right)^{1/2}.$$

Hence $|\int fg \, d\mu|^2 \leq \int |U|f|^2 g \, d\mu$. If $|f|^2 \geq |Uf|^2$ on a set of positive measure, then there exist $E \in \mathcal{F}$, $\mu(E) > 0$, $a \geq 0$ and $\varepsilon > 0$ such that $|f| \geq a + \varepsilon$ and $U|f|^2 \leq a^2$ on E. Take $g = f_{\mathcal{E}}|f|\mu(E)$. Then

$$(a + \varepsilon)^2 \leq \left(\int fg \, d\mu\right)^2 \leq \int U|f|^2 g \, d\mu \leq a^2$$

which is a contradiction. Hence $U|f|^2 \geq |f|^2$ and $\pi|f|^2 \geq |f|^2$.

There is a canonical map $j: L_1 \to S^*$ defined by $(jf)(g) = \int fg \, d\mu, f \in L_1, g \in \mathcal{G}$. We now show that

Lemma 7. \mathcal{M} is contained in the w^*-closure of jL_1^+ in S^*.

Proof. Choose $m \in \mathcal{M}$ and suppose that the w^* neighborhood $\{F \mid |Fg_i - mg_i| < \varepsilon, i = 1, \ldots, n\}$ of m defined by $g_1, \ldots, g_n \in \mathcal{G}$, $\varepsilon > 0$ is disjoint of jL_1^+. Let

$$u = \sum_{i=1}^n \pi[(g_i - 1mg_i)(g_i - 1mg_i)].$$

Now, let $f \in L_1^+$, $\|f\|_1 = 1$. Then

$$(jf)u = \sum_{i=1}^n \int \pi|g_i - 1mg_i|^2f \, d\mu$$

$$\geq \sum_{i=1}^n \int |g_i - 1mg_i|^2f \, d\mu$$

$$\geq \sum_{i=1}^n \int (g_i - 1mg_i)f \, d\mu \geq \varepsilon^2.$$

Hence $u \geq \varepsilon^2$ a.e. and hence u is invertible in L_∞. This implies that u is invertible in \mathcal{G}. But this is impossible since $mu = 0$.

Corollary. jL_1 is dense in \mathcal{G} in the w^*-topology.

Theorem 5. The Gelfand mapping $\sigma: \mathcal{G} \to \mathcal{C}(\mathcal{M})$ is positive.

Proof. If $g \geq 0$ a.e. then $g^{**} \geq 0$ on jL_1^+ where $g \to g^{**}$ is the canonical embedding of \mathcal{G} into \mathcal{G}^{**}. Since jL_1^+ is dense in \mathcal{M}, and g^{**} is continuous, $g^{**} \geq 0$ on \mathcal{M}. Hence $\sigma g = g^{**}|_\mathcal{M} \geq 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now we would like to extend σ to \mathcal{H}. First note that, by the Riesz representation theorem, any $F \in \mathcal{D}^*$ can be represented by a measure μ_F on $(\mathcal{M}, \mathcal{B})$. In particular, let $\bar{\mu} = \mu_{11}$. From the order-preserving property of the Riesz representation one can see that for any $f \in L_1$, μ_{11} is absolutely continuous with respect to $\bar{\mu}$. In fact we can obtain $d\mu_{11}/d\bar{\mu}$ as follows. First, considering only L_∞ functions we have

Lemma 8. If $f \in L_\infty$ then $\mu_{11} \ll \bar{\mu}$ and $d\mu_{11}/d\bar{\mu} = \sigma(\tau f)$.

Proof. For any $g \in \mathcal{B}$,

$$\int_{\mathcal{M}} g \cdot \sigma(\tau f) \, d\bar{\mu} = \int_{\mathcal{M}} \sigma(g \cdot \tau f) \, d\bar{\mu} = \int_X \pi(g \cdot \tau f) \, d\mu = \int_X g \, d\bar{\mu},$$

where the last equality follows from Theorem 4.

Definition 9. Let $T_f = \sigma(\tau f)$, $f \in L_\infty$.

Note that the linear mapping $f \mapsto \tau f$ defines a positive contraction $L_\infty(X, \mathcal{F}, \mu) \to L_\infty(\mathcal{M}, \mathcal{B}, \bar{\mu})$. But it is also a contraction for the corresponding L_1 norms; hence it is a contraction for all L_p norms, $1 \leq p \leq \infty$. We can then extend this mapping to $L_p(X, \mathcal{F}, \mu) \to L_p(\mathcal{M}, \mathcal{B}, \bar{\mu})$ with the property that $\int_X g \, d\mu = \int_{\mathcal{M}} \sigma(\tau f) \, d\bar{\mu}$ for all $g \in \mathcal{B}, f \in L_p$.

We can now prove a representation theorem for \mathcal{H}.

Theorem 6. There is a positive isometric $*$ isomorphism between \mathcal{H} and $L_\infty(\mathcal{M}, \mathcal{B}, \bar{\mu})$.

Proof. Let $h \in \mathcal{H}$ and define $\phi_h \in \mathcal{D}^*$ by

$$\phi_h(g) = \int_X \pi(gh) \, d\mu.$$

Note that if $h \in \mathcal{B}$ then ϕ_h is represented by the measure $\sigma(gh) \cdot d\bar{\mu}$ on \mathcal{M}. Let γ_h be the representing measure of ϕ_h, $h \in \mathcal{H}$. Then, for any nonnegative continuous function $og (g \in \mathcal{D}^+)$ on \mathcal{M}

$$\left| \int_{\mathcal{M}} og \, d\gamma_h \right| = \left| \int_X \pi(gh) \, d\mu \right| \leq \|h\|_\infty \int_X g \, d\mu = \|h\|_\infty \int_{\mathcal{M}} og \cdot d\bar{\mu}$$

which shows that γ_h is absolutely continuous with respect to $\bar{\mu}$ and has a density function bounded by $\|h\|_\infty$. We denote this density function by oh, noting that it is actually an extension of σ, and $\|oh\|_\infty \leq \|h\|_\infty$. Furthermore, if $l \in L_\infty$ then

$$\int_{\mathcal{M}} o(h) \tau(l) \, d\bar{\mu} = \int_{\mathcal{M}} o(h) \sigma(l/1) \, d\bar{\mu} = \int_X \pi(h \cdot \tau(l/1)) \, d\mu = \int_X \pi(h \cdot (l/1)) \, d\mu = \int_X h \cdot (l/1) \, d\mu.$$
Hence \(\left| \int_X h l \, d\mu \right| \leq \| oh \|_\infty \| \tau l \|_1 \leq \| oh \|_\infty \cdot \| l \|_1 \), so \(\| h \|_\infty \leq \| oh \|_\infty \). Thus the extended \(\sigma \) is also an \(L_\infty \)-norm isometry. To show that \(\sigma \mathcal{H} = L_\sigma (\mathcal{M}, \mathcal{B}, \mu) \), first note that, if \(h \in \mathcal{H}, l \in L_\sigma (X, \mathcal{F}, \mu) \) then

\[
\int_X h l \, d\mu = \int_\mathcal{M} \sigma(h) \tau(l) \, d\bar{\mu} \leq \| oh \|_1 \| \tau l \|_\infty \leq \| oh \|_1 \| l \|_\infty ,
\]

hence \(\| h \|_1 \leq \| oh \|_1 \). Thus \(\sigma^{-1} : \sigma \mathcal{H} \to \mathcal{H} \) is an \(L_1 \)-contraction onto \(\mathcal{H} \). Now if \(o\h_n \) is an a.e. monotone sequence in \(\sigma \mathcal{H} \) converging a.e. to a function \(l \) in \(L_\sigma (\mathcal{M}, \mathcal{B}, \mu) \) then \(h_n \) is an a.e. bounded and monotone sequence in \(\mathcal{H} \). If the limit function is \(g \), one can easily see that \(g \in \mathcal{H} \) and \(og = l \). Since \(\sigma \mathcal{H} \) contains the continuous functions, this shows that \(\sigma \mathcal{H} = L_\sigma (\mathcal{M}, \mathcal{B}, \mu) \). Now we want to show that

\[
\int_X \sigma(h) \sigma(g) \tau(l) \, d\mu = \int_\mathcal{M} \sigma(h) \sigma(f) \, d\bar{\mu},
\]

for all \(h, f \in \mathcal{H} \). In fact, for a fixed \(h \in \mathcal{H} \), let \(\mathcal{N} \subset \mathcal{H} \) be the class of functions \(f \) for which this relation holds. Then \(\sigma \mathcal{N} \) contains the continuous functions of \(\mathcal{M} \), and one can show, as before, that \(\sigma \mathcal{N} \) is closed under a.e. monotone limits. Hence \(\sigma \mathcal{N} = L_\sigma (\mathcal{M}, \mathcal{B}, \mu) \).

Finally, we show that extended \(\sigma \) is multiplicative, i.e. \(\sigma(h_1) \cdot \sigma(h_2) = \sigma(\tau(h_1 h_2)) \) for all \(h_1, h_2 \in \mathcal{H} \). First note that if \(f \in L_\sigma (\mathcal{M}, \mathcal{F}, \mu) \) and \(\int_\mathcal{M} f r(l) \, d\bar{\mu} = 0 \) for all \(l \in L_\sigma (X, \mathcal{F}, \mu) \) then \(\sigma^{-1} f = 0 \), hence \(f = 0 \). Now for \(h \in \mathcal{H}, g \in \mathcal{G}, l \in L_\sigma (X, \mathcal{F}, \mu) \),

\[
\int_\mathcal{M} \sigma(h) \sigma(g) \tau(l) \, d\mu = \int_\mathcal{M} \sigma(h) \sigma(g) \sigma(\tau(l)) \, d\mu = \int_\mathcal{M} \sigma(h) \sigma(g \tau(l)) \, d\mu = \int_X \sigma(h g \tau(l)) \, d\mu = \int_X \sigma(h) \sigma(g \tau(l)) \, d\mu = \int_X \sigma(h) \sigma(g) \tau(l) \, d\mu,
\]

hence \(\sigma(h) \cdot \sigma(g) = \sigma(h g) \).

Now suppose that \(h_1, h_2 \in \mathcal{H}, l \in L_\sigma (X, \mathcal{F}, \mu) \). Then

\[
\int_\mathcal{M} \sigma(h_1) \sigma(h_2) \tau(l) \, d\bar{\mu} = \int_\mathcal{M} \sigma(h_1) \sigma(h_2 \tau(l)) \, d\mu = \int_X \sigma(h_1) \sigma(h_2 \tau(l)) \, d\mu = \int_X \sigma(h_1) \tau(l) \, d\mu,
\]

which shows that \(\sigma(h_1) \sigma(h_2) = \sigma(h_1 h_2) \), and completes the proof of the theorem.

We remark that every \(f \in L_p (\mathcal{M}, \mathcal{B}, \mu), 1 \leq p < \infty \), induces a function \(h \in L_p (X, \mathcal{F}, \mu) \), defined by \(\int_X h l \, d\mu = \int_\mathcal{M} f r(l) \, d\bar{\mu} \) for all \(l \in L_\sigma (X, \mathcal{F}, \mu) \), \(1/p + 1/q = 1 \). Since \(\tau \) is an \(L_q \)-contraction the integral on \(\mathcal{M} \) is defined and \(h \) satisfies \(\int_X h l \, d\mu = \int_\mathcal{M} \sigma(h) \tau(l) \, d\bar{\mu} \).
\[\int_X |hTl| \, d\mu, \text{ for all } l \in L_\alpha(X, \mathcal{F}, \mu). \] The case \(p=1 \) causes no difficulty. If \(f \in L_1(\mathcal{M}, \mathcal{B}, \bar{\mu}), l \in L_\alpha(X, \mathcal{F}, \mu), \)

\[
\left| \int_{\mathcal{M}} f \tau(l) \, d\bar{\mu} \right| \leq \left| \int_{\{|l| \leq n\}} f \tau(l) \, d\bar{\mu} \right| + \left| \int_{\{|l| > n\}} f \tau(l) \, d\bar{\mu} \right|
\]

\[
\leq \| f \| \| \tau \| \int \{|l| \leq n\} |f| \, d\bar{\mu} + n\| f \|_{\infty}
\]

\[
\leq \| f \| \| \tau \| \int \{|l| \leq n\} |f| \, d\bar{\mu} + n\| f \|_{l_1}.
\]

Thus, if \(l_k \) is a sequence in \(L_\alpha \) with \(\| l_k \| \to 0 \) and \(\| l_k \|_{\infty} \leq K \) then

\[
\lim_k \left| \int \tau(l_k) \, d\bar{\mu} \right| \leq K \int \{|l| \geq n\} |f| \, d\bar{\mu} \quad \text{for all } n \geq 1.
\]

Hence this limit is zero and the functional \(l \to \int f \tau(l) \, d\bar{\mu} \) on \(L \) is induced by an \(L_1 \)-function \(h \). In a similar way, any Baire measure on \((\mathcal{M}, \mathcal{B})\) induces what one might call "an invariant functional" on \(L_\alpha(X, \mathcal{F}, \mu) \).

We also note the following relation between the maximal ideal spaces of \(\mathcal{M} \) and \(\mathcal{B} \); that is, between the Feller and Martin boundaries (cf. [9]). Since \(\mathcal{M} \) is isometrically isomorphic to \(L_\alpha(X, \mathcal{F}, \mu) \), we state this relation in the following familiar form:

Lemma 9. Let \(M \) be a compact Hausdorff space, \(\mathcal{B} \) its Baire sets, and \(\bar{\mu} \) a Baire measure on \((M, \mathcal{B})\) with support \(M \). Let \(M' \) be the maximal ideal space of the \(C^* \)-algebra \(L_\alpha(M, \mathcal{B}, \bar{\mu}) \). Then there is a continuous and onto map \(\rho: M' \to M \).

Proof. Interpret \(M' \) and \(M \) as classes of homomorphisms and define \(\rho: M' \to M \) by \(\rho(\phi) = \phi|_{\mathcal{C}(M)} \). Then \(\rho \) is continuous. We show it is onto. Let \(m \in M \), and consider the ideal generated by \(m \cdot L_\alpha(M, \mathcal{B}, \bar{\mu}) \). If it is proper, it can be embedded in a maximal ideal, whose image must then be \(m \) under \(\rho \). We show it is proper. If not, then \(1 = \sum f_i g_i \) where \(f_i \in m, g_i \in L_\alpha(M, \mathcal{B}, \bar{\mu}) \). Since \(m \) is a maximal ideal, \(\exists x_0 \) such that \(f_i(x_0) = 0 \) for \(i = 1, \ldots, n \). Hence \(|f_i| \leq e/h \sup |g_i| \) on some neighborhood \(U \) of \(x_0 \), such that \(\mu(U) \neq 0 \). Hence \(1 = \sum f_i g_i \leq e \) on \(U \), which is a contradiction.

Corollary. \(M \) is homeomorphic to the quotient space \(M'/\rho \).

We finish this section by considering the possibility of joining \(X \) and \(M \). In general, this cannot be done. If, however, \(T \) is induced by a Markov kernel, such that the transform of every point measure is absolutely continuous with respect to \(\mu \), then the members of \(\mathcal{H} \) can be considered as actual functions on \(X \), and the evaluations of these functions at points of \(X \) induce bounded linear functionals on \(\mathcal{H} \). Hence \(X \) can be embedded in \(\mathcal{B}^* \) (possibly in a many to one fashion). We shall denote the image of \(X \) under this mapping as \(X \) also. Hence \(X \in j(L_1^+(X, \mathcal{F}, \mu)) \).

Using the method of Lemma 7, \(X \) is dense in \(M \), in the \(\omega^* \)-topology of \(\mathcal{B}^* \).
Let \bar{X} be the w^*-closure of X in \mathcal{B}. Then \bar{X} is a compact Hausdorff space. The following result, stated for the Martin-Doob boundary, is also true for the Feller boundary.

Theorem 7. For any $g \in L_1(X, \mathcal{F}, \mu)$, $T^*g \, d\mu \rightarrow \tau(g) \, d\mu$ in the w^*-topology of Baire measures on \bar{X}.

Proof. Let \mathcal{A}_1 is the sub-C^*-algebra of \mathcal{A}, consisting of functions $g' \in \mathcal{A}$ such that $\pi(g') \in \mathcal{G}$.

Let $\mathcal{C} = \{f \in C(\bar{X}) \mid f|_X \in \mathcal{A}_1\}$, $\mathcal{C}_0 = \{f \in C(\bar{X}) \mid f|_X \in \mathcal{A}_0\}$. By the Stone-Weierstrass theorem $\mathcal{C} = C(\bar{X})$. Also, \mathcal{C}_0 is a closed ideal in \mathcal{C}. Let $\mathcal{N} \subset \bar{X}$ be the closed subset such that $\mathcal{C}_0 = \{f \in \mathcal{C} \mid f(\mathcal{N}) = 0\}$. Then we have

$$C(\mathcal{N}) \cong^* C(\bar{X})/C_0 \cong^* A_1/A_0 \cong^* \mathcal{A} \cong^* \mathcal{M}.$$

Hence $C(\mathcal{N}) \cong^* C(\mathcal{M})$ is induced by a homeomorphism $\phi : \mathcal{N} \rightarrow \mathcal{M}$. Hence $g(s) = g(\phi(s))$ under the above sequence of isomorphisms. But \mathcal{G} separates the points of \mathcal{B}^*, so $\phi = \text{identity}$ and $\mathcal{N} = \mathcal{M}$.

In other words,

$$\{f \in C(\bar{X}) \mid f|_X \in \mathcal{A}_0\} = \{f \in C(\bar{X}) \mid f(\mathcal{M}) = 0\}.$$

Thus if $f \in C(\bar{X})$, $g \in L_1(\bar{X}, \mathcal{F}, \mu)$, then:

$$\int_X f T^*g \, d\mu = \int_X U^*(f|_X)g \, d\mu \Rightarrow \int_X \pi(f|_X)g \, d\mu = \int_{\mathcal{M}} \pi(f|_X)\tau(g) \, d\mu$$

and

$$\int_{\mathcal{M}} \pi(f|_X) \cdot \tau(g) \, d\mu = \int_{\mathcal{M}} f|_X \cdot \tau(g) \, d\mu = \int_X \pi(f|_X) \cdot \tau(g) \, d\mu.$$

Thus $T^*g \, d\mu \rightarrow \tau(g) \, d\mu$.

6. **Harmonic functions in the unit disk.** As an example we consider a transformation suggested by Feller in [10].

Let $D = \{z = re^{i\phi} \mid 0 \leq r < 1, -\pi \leq \phi \leq \pi\}$ be the unit disk with the (geometric) boundary C. Let \mathcal{F} and μ be the σ-field of Borel subsets and the Lebesque measure. For every $z \in D$, $E \in \mathcal{F}$, let

$$P(z, E) = \mu(Q_z \cap E)/\mu(Q_z)$$

where $Q_z = \{Z \mid |Z - z| < 1 - |z|\}$. Then P defines a Markov kernel, such that the transformation of a unit mass at $z \in D$ is given by the measure $P(z, \cdot) \ll \mu$. We let T be the induced transformation on $L_1(D, \mathcal{F}, \mu)$. The adjoint U of T is given by

$$(Uf)(z) = \int f(Z)P(z, dZ), \quad f \in L_\infty, z \in D.$$
It is clear that any bounded harmonic function h belongs to \mathcal{H}. The converse is also true, but it seems that no explicit proof of it has been given and we would like to indicate an outline for this proof.

If R is a Borel subset of $[0, 1)$ let $C_R = \{ z \mid |z| \in R \}$. One can then obtain the following

Lemma 10. Let $\frac{1}{2} \leq K < 1$ and R be a Borel subset of $[K, 1)$. Then for all $z \in D$, $\frac{1}{2} \leq |z| \leq K$,

\[
\frac{\mu(Q_z \cap C_R)}{\mu(Q_z \cap C_{(K,1)})} \geq \frac{1}{16} \left[\frac{\lambda(R)}{1-K} \right]^{3/2}
\]

where λ is the one dimensional Lebesgue measure.

Corollary. Let $E = C_{(0,1/2)} \cup [K, 1)$ and let $f \in L^1_{+}, f=0$ a.e. on $C_{(K,1)}$. Then

\[
\int_{C_R} T^k_b f d\mu \geq \frac{1}{16} \left[\frac{\lambda(R)}{1-K} \right]^{3/2} \int_{C_{(K,1)}} T^k_b f d\mu
\]

for all $n \geq 0$.

Using this corollary one can see that if a function $h \in \mathcal{H}$ (which is necessarily continuous) has the form $h(re^{i\phi}) = f(r)g(\phi)$ then $\lim_{n \to \infty} f(r)$ exists, and that this implies the harmonicity of h.

Now if h is any function in \mathcal{H}, let t be an irrational number and consider, for a fixed n, $-\infty < n < \infty$,

\[
\lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} (\tau^k \cdot z)^{-n} h(\tau^k \cdot z) = F_n
\]

where $\tau : D \to D$ is given by $\tau z = e^{2\pi i t} z$. This limit F_n exists for all nonzero $z \in D$, depends only on $r = |z|$, and satisfies

\[
r^n F_n(r) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} e^{-i n \phi} h(re^{i \phi}) d\phi.
\]

But, it is clear that

\[
e^{i n \phi} r^n F_n(r) = \lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^{m} e^{-i2\pi n k t} h(re^{i2\pi k t})
\]

is a function in \mathcal{H}, hence $e^{i n \phi} r^n F_n(r)$ must be harmonic, which shows that $r^n F_n(r) = C_n r^{\lfloor n \rfloor}$ and completes the proof of the following

Lemma 11. A bounded function belongs to \mathcal{H} if and only if it is a harmonic function.

One then shows that the C^*-algebra \mathcal{H} is isometrically $*$-isomorphic to L_{∞} of the unit circle. For any bounded measurable function l on D, let λ_l be the measure on the unit circle obtained by sweeping out $l d\mu$ by the Poisson kernel. The harmonic function $\pi(l/l)$ corresponds to $d\lambda_l/d\lambda$, which is continuous. It then follows that the maximal ideal space \mathcal{M} of \mathcal{H} is homeomorphic to the unit circle. Since T is induced by a Markov kernel, D can be imbedded into \mathcal{M}, hence $D \cup \mathcal{M}$ is homeomorphic to the closed unit disk.
References

UNIVERSITY OF TORONTO,
TORONTO, CANADA