THE C^k-CLASSIFICATION OF CERTAIN OPERATORS IN $L_p(1)$

BY

SHMUEL KANTOROVITZ

Introduction. We investigate in this paper the one-parameter family of operators

$$T_a = M + \alpha J$$

acting in $L_p(0, 1)$ ($1 \leq p < \infty$), where $\alpha \in \mathbb{C}$ (the complex field), $M: f(x) \mapsto xf(x)$ and $J: f(x) \mapsto \int_0^x f(t) \, dt$.

Extending a result of Sakhrnovich [8] from the case $p=2$ to the case $1 < p < \infty$, Kalisch [4] established recently that T_a is similar to M if $\text{Re} \, \alpha = 0$.

The situation becomes quite different if $\text{Re} \, \alpha \neq 0$; thus, T_a is not similar to M if $|\text{Re} \, \alpha| \geq 1$, and more generally, T_a is not similar to T_{β} if $|\text{Re} \, \alpha| \neq |\text{Re} \, \beta|$ (Proposition 13). This result will follow from our discussion of the C^k-operational calculus (both "global" and "local", in the sense of [5], [6], [7]) for the operators T_a. We recall briefly the terminology, restricting ourselves to bounded operators $T: X \to X$ (X a Banach space) with real spectrum $\sigma(T)$.

Fix a compact interval $\Delta \subseteq \mathbb{R}$ (the real line) which contains $\sigma(T)$. For $n=0, 1, 2, \ldots$, let $C^n(\Delta)$ denote the Banach algebra of all complex valued functions of class C^n on Δ, with the norm

$$\|\varphi\|_{n, \Delta} = \sum_{j=0}^{n} \sup_{\Delta} |\varphi^{(j)}|^{1/j}$$

(We shall write $\|\varphi\|_{n, \Delta}$ when $\Delta = [0, 1]$.) We say that T is of class C^n (and we write $T \in (C^n)$ if there exists a continuous representation $\varphi \mapsto T(\varphi)$ of $C^n(\Delta)$ on X such that $T(\varphi) = I$ (the identity operator) for $\varphi(t) \equiv 1$ and $T(\varphi) = T$ for $\varphi(t) \equiv t$. Such a representation is unique when it exists, and is called the C^n-operational calculus for T. For example, $T_0 = M$ is of class C^0 (= C^0), and its C-operational calculus is $\varphi \mapsto M(\varphi)$, where

$$M(\varphi): f(x) \mapsto \varphi(x)f(x), f \in L_p(0, 1).$$

If $W \subseteq X$ is a linear manifold, we denote by $T(W)$ the algebra of all linear transformations of X with domain W and range contained in W. If W is invariant for T, a C^n-operational calculus for T on W is an algebra homomorphism $\varphi \mapsto T(\varphi)$ of $C^n(\Delta)$ into $T(W)$ with the following properties:

(i) $T(\varphi) = I/W$ for $\varphi(t) \equiv 1$;
(ii) $T(\varphi) = T/W$ for $\varphi(t) \equiv t$;
(iii) for each $x \in W$, the mapping $\varphi \mapsto T(\varphi)x$ of $C^n(\Delta)$ into X is continuous.

Received by the editors March 9, 1967.

(1) This research was partially supported by NSF-GP-5493.
For each $n=0,1,2,\ldots$, there exists a maximal invariant linear manifold $W_n(T)$ on which T admits a C^n-operational calculus, and the latter is uniquely determined on $W_n(T)$. In fact, $W_n(T)$ is the set of all $x \in X$ for which

$$|x|_n = \sup \{\|\varphi(T)x\| : \varphi \text{ a polynomial with } \|\varphi\|_{n,A} \leq 1\}$$

is finite.

The "semisimplicity manifold" $W_0(T)$ is particularly important (cf. Theorem 2.1 in [6]); it contains trivially the eigenvectors of T. We shall write $W_n(T; p)$ instead of $W_n(T_a)$ when it will be necessary to specify the L_p space under consideration.

We may now describe the main results of this paper (for $1 < p < \infty$):

1. T_a is of class C^n if $|\Re a| \leq n$ and only if $|\Re a| < n + 1$ (Theorem 6); the C^n-operational calculus for T_a ($|\Re a| \leq n$) is given in Theorems 8 and 9.

2. The W_k manifolds of T_a are dense for $\Re a < 0$ and trivial for $\Re a \geq 1$ and $k < [\Re a]$ (Theorems 10 and 11).

3. T_a is not spectral (in Dunford's sense) for $|\Re a| \geq 1$ (it is of course spectral for $\Re a = 0$, by the Kalisch-Sakhnovič result).

1. **Five lemmas.** Let $\{F; \Re \zeta > 0\}$ be the Riemann-Liouville holomorphic semigroup, acting in $L_p(0, 1)$ ($1 \leq p < \infty$):

$$(J^f)(x) = (1/\Gamma(\zeta)) \int_0^x (x-t)^{\zeta-1}f(t) \, dt$$

($f \in L_p(0, 1)$, $x \in [0, 1]$, $\Re \zeta > 0$). It is known (cf. [3] for $p = 2$, and [4] for $1 < p < \infty$) that if $1 < p < \infty$, the semigroup $\{F; \Re \zeta > 0\}$ admits a strongly continuous boundary group $\{F^\gamma; \gamma \in \mathbb{R}\}$ of bounded operators, and

$$\|F^\gamma\| \leq e^{\alpha|\gamma|/2} \quad (\gamma \in \mathbb{R})$$

(see also the estimates at the end of Kalisch's paper [4]). The operator F ($\Re \zeta > 0$) is one-to-one in $L_p(0, 1)$ ($p \geq 1$); its inverse, with domain $D_{-1} = \mathcal{R}(J^\zeta)$ (the range of J^ζ), is a closed operator, which we denote by $J^{-\zeta}$.

For $1 < p < \infty$, note that $\mathcal{R}(J^{\beta + i\gamma}) = \mathcal{R}(J^\beta)$ ($\beta > 0$, $\gamma \in \mathbb{R}$), since $J^{\beta + i\gamma} = J^\beta J^{i\gamma}$ and $J^{i\gamma}$ is nonsingular.

For $p = 1$ and $\gamma \in \mathbb{R}$, we define $J^{i\gamma}$ as follows. Its domain is $D_{i\gamma} = U(\mathcal{R}(J^\gamma); \Re \zeta > 0)$; if $f \in D_{i\gamma}$, say $f = J^\gamma h$ for some $h \in L_1(0, 1)$ and $\zeta \in C$ with $\Re \zeta > 0$, then $J^{i\gamma} f = J^{i\gamma + i\gamma} h$. One verifies easily that $J^{i\gamma}$ is well defined.

We shall use the notation D_ζ also for $\Re \zeta > 0$, in which case $D_\zeta = L_p(0, 1)$ (the domain of J^{ζ}); similarly $D_{i\gamma} = L_p(0, 1)$ for $1 < p < \infty$.

Lemma 1. For any $\zeta \in C$, D_ζ is invariant under M, and the following (trivially equivalent) identities are valid on D_ζ:

1. $M J^\zeta = J^{\zeta} M = \zeta J^{\zeta + 1}$,
2. $J^\zeta M = T_+ J^\zeta$,
3. $M J^\zeta = J^\zeta T_\zeta$.

Proof. If \(\text{Re} \zeta > 0 \) (\(\text{Re} \zeta \geq 0 \) if \(1 < p < \infty \)), the first statement is trivial, since \(\mathcal{D}_{\zeta} = L_p(0, 1) \). For \(g \in L_p(0, 1) \) and \(\text{Re} \zeta > 0 \),

\[
(M^{\zeta} - J^{\zeta} M)g(x) = \Gamma(\zeta)^{-1} \int_0^x (x-t)^{\zeta-1} (x-t) g(t) \, dt = \Gamma(\zeta)^{-1} \Gamma(\zeta + 1) J^{\zeta+1} g(x) = \zeta J^{\zeta+1} g(x).
\]

This proves the first, and hence all three identities of the lemma (for \(1 \leq p < \infty \) and \(\text{Re} \zeta > 0 \)). By (3), \(M \mathcal{R}(J^\zeta) \subset \mathcal{R}(J^\zeta) \), i.e. \(\mathcal{D}_{-\zeta} \) is invariant under \(M \). Apply \(J^{-\zeta} \) to both sides of (3):

\[
J^{-\zeta} M J^{\zeta} = T_{\zeta},
\]

i.e., \(J^{-\zeta} M = T_{\zeta} J^{-\zeta} \) on \(\mathcal{D}_{-\zeta} \). This proves (2) (and hence the lemma) for \(\text{Re} \zeta < 0 \).

Let \(\mathcal{D} = U(\mathcal{D}_{\zeta}; \text{Re} \zeta < 0) \). \(\mathcal{D} \) is \(M \)-invariant, and dense in \(L_p(0, 1) \) (\(1 \leq p < \infty \)). Let \(g \in \mathcal{D} \); then \(g = J^\gamma h \) for some \(\zeta \in \mathbb{C} \) with \(\text{Re} \zeta > 0 \) and some \(h \in L_p(0, 1) \). Using (3) twice (for \(\text{Re} \zeta > 0 \)), we obtain (for \(\gamma \in \mathbb{R} \)):

\[
M J^\gamma g = M J^{\zeta+\gamma} h = J^{\zeta+\gamma} T_{\zeta+\gamma} h
= J^{\gamma} (T_{\zeta} + i\gamma J) h = J^{\gamma} (M J^{\zeta} + i\gamma J^{\zeta+1}) h
= J^{\gamma} (M + i\gamma J) J^{\zeta} h = J^{\gamma} T_{\zeta} J^\gamma g.
\]

If \(p = 1 \), this finishes the proof of the lemma for \(\text{Re} \zeta = 0 \). If \(1 < p < \infty \), this shows that (3) is valid on the dense subset \(\mathcal{D} \) of \(L_p(0, 1) \) (for \(\gamma = i\gamma \); since \(J^{i\gamma} \) is a bounded operator, (3) is valid everywhere on \(L_p(0, 1) \).

Lemma 2. For \(\beta, \gamma \in \mathbb{R} \) arbitrary, the operators \(T_{\beta+i\gamma} \) and \(T_{\beta} \) acting in \(L_p(0, 1) \) (\(1 < p < \infty \)) are similar, with \(J^{i\gamma} \) implementing the similarity:

\[
J^{i\gamma} T_{\beta+i\gamma} J^{-i\gamma} = T_{\beta},
\]

(for \(\beta = 0 \) and \(p = 2 \), this is due to Sakhnovi\'c [8]).

Proof. By (3),

\[
J^{i\gamma} T_{\beta+i\gamma} J^{-i\gamma} = J^{i\gamma} (T_{i\gamma} + \beta J) J^{-i\gamma} = M + \beta J = T_{\beta}.
\]

Remark. For any \(1 \leq p < \infty \) and any complex numbers \(\alpha \) and \(\zeta \), \(T_a \) is unboundedly similar to \(T_{\zeta} \) (in particular, \(T_a \) is unboundedly similar to \(M \)). Indeed,

\[
J^{-\zeta+a} T_a J^{\zeta-a} = T_{\zeta} \quad \text{on } \mathcal{D}_{-\zeta-a},
\]

where everything makes sense by Lemma 1. This suggests considering the map \(\varphi \to J^{-a} M(\varphi) J^a \) as a "possible" operational calculus for \(T_a \).

Lemma 3. For any integer \(n \geq 0 \), and \(1 \leq p < \infty \), the operator \(T_n \) acting in \(L_p(0, 1) \) belongs to \((C^n)-(C^{n-1}) \), and the \(C^n \)-operational calculus for \(T_n \) is given by

\[
T_n(\varphi) = J^{-n} M(\varphi) J^n, \quad \varphi \in C^n[0, 1].
\]
Remark. (1) \(\mathcal{C}^{-1} = \Phi \) by convention. (2) \(T_n(\varphi) \) is well defined, since \(\mathcal{A}(J^n) \) is a \(\mathcal{C}^n[0, 1] \)-module.

Proof. By Leibnitz’ formula,

\[
(5) \quad T_n(\varphi) = \sum_{j=0}^{n} \binom{n}{j} M(\varphi^{(j)} J^j), \quad \varphi \in \mathcal{C}^n[0, 1].
\]

Thus \(T_n(\varphi) \) is a bounded operator on \(L_p(0, 1) \). In fact, since \(\|J^j\| \leq 1/j! \) (cf. [3, p. 664]), we have

\[
(6) \quad \|T_n(\varphi)\| \leq \binom{n}{[n/2]} \|\varphi\|_n, \quad \varphi \in \mathcal{C}^n[0, 1].
\]

The map \(\varphi \mapsto T_n(\varphi) \) is clearly an algebra homomorphism of \(\mathcal{C}^n[0, 1] \) into the bounded operators on \(L_p(0, 1) \), which is continuous by (6). If \(\varphi(x) \equiv 1 \), \(T_n(\varphi) \) is trivially the identity operator. If \(\varphi(x) \equiv x \), \(T_n(\varphi) = T_n \) by (3). Thus, \(T_n \in \mathcal{C}^n \) and its \(\mathcal{C}^n \)-operational calculus is given by (4). Finally, apply (5) to the functions

\[
\varphi_t(x) = e^{itx} \quad (x, t \in \mathbb{R}).
\]

Thus

\[
(\mathbb{e}^{itT_n g})(x) = \sum_{j=0}^{n} \binom{n}{j} (it)^j e^{itx}(J^j g)(x),
\]

and consequently \(\|e^{itT_n}\| \neq O(|t|^{-n-1}) \) (\(n = 1, 2, \ldots \)). Therefore \(T_n \notin \mathcal{C}^{n-1} \) (\(n \geq 1 \)) by Lemma 2.11 in [5].

Lemma 4. Let \(n \geq 0 \) be an integer. Then, for \(\varphi \) of class \(\mathcal{C}^n \) and \(g \in \mathcal{A}(J^n) \) (or vice versa, or for both \(\varphi \) and \(g \) in \(\mathcal{A}(J^n) \)), the following identity is valid:

\[
J^n(\varphi J^{-n} g) = \sum_{j=0}^{n} \binom{n}{j} (-1)^j J^j (g J^{-j} \varphi).
\]

Remark. Here, as usual, \(\mathcal{A}(J^n) \) denotes the range of \(J^n \) in \(L_p(0, 1) \), with \(p \) arbitrary (1 \(\leq p < \infty \)). Note the analogy with Leibnitz’ formula (in fact, the latter may be used to prove the lemma).

Proof. We use induction on \(n \). The lemma is trivial for \(n = 0 \). Suppose it is true for \(n = k \). Let \(\varphi \) and \(g \) be as required for \(n = k + 1 \). Write \(g' = J^{-1} g \). Then \(\varphi \) and \(g' \) satisfy the hypothesis for \(n = k \). Therefore

\[
J^{k+1}(\varphi J^{-(k+1)} g) = J J^k(\varphi J^{-k} g')
\]

\[
= \sum_{j=0}^{k} (-1)^j \binom{k}{j} J^j (g' J^{-j} \varphi).
\]

An integration by parts shows that

\[
J(g' J^{-i} \varphi) = g J^{-i} \varphi - J(g J^{-i+1} \varphi).
\]
Thus
\[J^{k+1}(gJ^{-(k+1)}g) = \sum_{j=0}^{k} (-1)^j \binom{k}{j} \left\{ J^j(gJ^{-j}g) - J^{j+1}(gJ^{-(j+1)}g) \right\} \]
\[= g\varphi + \sum_{j=1}^{k} (-1)^j \binom{k}{j} \left[\binom{k}{j-1} \right] J^j(gJ^{-j}g) \]
\[+ (-1)^{k+1}J^{k+1}(gJ^{-(k+1)}g). \]

Since
\[\binom{k}{j} + \binom{k}{j-1} = \binom{k+1}{j}, \]
we obtain the correct identity for \(n = k + 1 \), Q.E.D.

Lemma 5. For any integer \(n \geq 0 \), and for \(1 \leq p < \infty \), the operator \(T_{-n} \) acting in \(L_p(0, 1) \) belongs to \((C^n) - (C^{n-1}) \), and the \(C^n \)-operational calculus for \(T_{-n} \) is given by
\[(7) \quad T_{-n}(\varphi) = \sum_{j=0}^{n} \binom{n}{j} (-1)^j M(\varphi^{(j)}), \quad \varphi \in C^n[0, 1]. \]

Proof. The map \(\varphi \mapsto T_{-n}(\varphi) \) of \(C^n[0, 1] \) into the bounded operators on \(L_p(0, 1) \) is clearly linear and continuous, in fact,
\[\|T_{-n}(\varphi)\| \leq \left(\frac{n}{[n/2]} \right) \|\varphi\|. \]

For \(g \in \mathcal{R}(J^n) \), we have by Lemma 4:
\[(8) \quad T_{-n}(\varphi)g = J^n(\varphi J^{-n}g). \]

Therefore \(\mathcal{R}(J^n) \) is invariant under \(T_{-n}(\varphi) \) (for all \(\varphi \in C^n[0, 1] \)) and \(T_{-n}(\varphi\psi) = T_{-n}(\varphi)T_{-n}(\psi) \) on \(\mathcal{R}(J^n) \) (for all \(\varphi, \psi \in C^n[0, 1] \)). Since \(\mathcal{R}(J^n) \) is dense in \(L_p(0, 1) \) and \(T_{-n}(\varphi) \) is continuous, it follows that \(T_{-n}(\cdot) \) is multiplicative on \(C^n[0, 1] \). The relations \(T_{-n}(\varphi) = I(T_{-n}) \) for \(\varphi(x) = 1 \) (\(\equiv x \)) are trivial on \(\mathcal{R}(J^n) \) by (8) and Lemma 1; by density, they are true throughout \(L_p(0, 1) \).

Finally, one verifies that \(T_{-n} \notin (C^{n-1}) \) just as in Lemma 3.

2. **Global classification** \((1 < p < \infty) \).

Theorem 6. The operator \(T_\alpha \) acting in \(L_p(0, 1) \) \((1 < p < \infty) \) is of class \(C^n \) \((n = 0, 1, 2, \ldots) \) if \(|\text{Re } \alpha| \leq n \) and only if \(|\text{Re } \alpha| < n + 1 \).

In other words, \(T_\alpha \) is of class \(C^n \) in the strip \(|\text{Re } \alpha| \leq n \) and is not of class \(C^n \) outside the strip \(|\text{Re } \alpha| < n + 1 \).

The theorem is an immediate corollary of Lemmas 3 and 5, together with the following

Lemma 7. Suppose that, for some integer \(n \geq 0 \) and some \(\alpha_0 \in \mathbb{C} \), the operator \(T_{\alpha_0} \) is of class \(C^n \) (when acting in \(L_p(0, 1) \), \(1 < p < \infty \)). Then \(T_\alpha \) is of class \(C^n \) for all \(\alpha \) in the strip \(-n \leq \text{Re } \alpha \leq n \) if \(\text{Re } \alpha_0 \geq 0 \) \((\text{Re } \alpha_0 \geq \text{Re } \alpha \leq n \) if \(\text{Re } \alpha_0 \leq 0 \).
Proof. To fix the ideas, suppose $\Re \alpha_0 = \beta_0 \geq 0$. Write $\alpha = \beta + i\gamma$ ($\beta, \gamma \in \mathbb{R}$). Fixing a polynomial φ and elements $f \in L_p(0, 1)$, $g \in L_q(0, 1)$ ($p^{-1} + q^{-1} = 1$), we define

$$\Phi(\alpha) = \langle e^{\alpha a} \varphi(T_a) f, g \rangle, \quad \alpha \in \mathbb{C}.$$

Since $|e^{\alpha a}| \leq e^{\alpha a^2}$, and since $\varphi(T_a)$ is a polynomial in α (with operator coefficients), we have $|\Phi(\alpha)| = O(e^{\epsilon |\alpha|^2})$ (for $|\gamma| \to \infty$) in the strip $-n \leq \Re \alpha \leq \beta_0$, for any $\epsilon > 0$.

By Lemma 2 and the estimate $\|f^{1/2}\| \leq e^{a^2/2}$, we have:

$$|\Phi(\beta + i\gamma)| \leq \exp \pi \beta^2 - \gamma^2 + |\gamma| \cdot \|f\|_p \cdot \|g\|_q \cdot \|\varphi(T_\beta)\|$$

$$\leq \exp \pi (\beta^2 + 1/4) \cdot \|f\|_p \cdot \|g\|_q \cdot \|\varphi(T_\beta)\|$$

for all $\beta, \gamma \in \mathbb{R}$.

Since T_{-n} and T_{β_0} are of class C^n (by Lemma 5, the hypothesis and Lemma 2), there exists a constant K (depending only on n, β_0 and p) such that

$$\|\varphi(T_{-n})\| \leq K \|\varphi\|_n \quad \text{and} \quad \|\varphi(T_{\beta_0})\| \leq K \|\varphi\|_n.$$

Hence

$$|\Phi(-n + i\gamma)| \leq M \|f\|_p \cdot \|g\|_q \cdot \|\varphi\|_n$$

and

$$|\Phi(\beta_0 + i\gamma)| \leq M \|f\|_p \cdot \|g\|_q \cdot \|\varphi\|_n$$

for all real γ, where $M = K \exp \pi (\delta^2 + 1/4)$ and $\delta = \max (\eta, \beta_0)$. By the Phragmèn-Lindelöf principle (cf. [9, p. 180]), it follows that $|\Phi(\alpha)| \leq M \|f\|_p \cdot \|g\|_q \cdot \|\varphi\|_n$ for $-n \leq \Re \alpha \leq \beta_0$. Hence, for such α,

$$\|\varphi(T_{-n})\| \leq M \exp \pi (\gamma^2 - \beta^2) \|\varphi\|_n,$$

and the lemma follows.

The next two theorems give explicitly the C^n-operational calculus for T_α ($|\Re \alpha| \leq n$) acting in $L_p(0, 1)$, with $1 < p < \infty$.

Theorem 8. Let n be a nonnegative integer. Then for $0 \leq \Re \alpha \leq n$ and $\varphi \in C^n[0, 1]$ the range of J^α (i.e., the domain of $J^{-\alpha}$) is invariant under $M(\varphi)$, and the C^n-operational calculus for T_α is given by

$$T_\alpha(\varphi) = J^{-\alpha} M(\varphi) J^\alpha, \quad \varphi \in C^n[0, 1].$$

Proof. By Lemma 1 (3),

$$\varphi(M) J^\alpha = J^\alpha \varphi(T_\alpha)$$

for any polynomial φ. In particular,

$$\varphi(M) \mathcal{R}(J^\alpha) \subset \mathcal{R}(J^\alpha), \quad \varphi = \text{a polynomial}.$$
Let \(\varphi \in C^n[0, 1] \), and choose polynomials \(\varphi_k \) which converge to \(\varphi \) in \(C^n[0, 1] \). In particular, \(\varphi_k \to \varphi \) uniformly in \([0, 1] \), and therefore

\[
\mathcal{D}_{-a} \ni \varphi_k J^a g \to \varphi J^a g
\]

in \(L_p(0, 1) \), for any \(g \in L_p(0, 1) \). By (9), we have:

\[
J^{-\alpha}(\varphi_k J^a g) = \varphi_k(T_a) = T_a(\varphi_k) \to T_a(\varphi)
\]

in the uniform operator topology, since \(T_a \in (C^n) \) by Theorem 6 (for \(|\text{Re } \alpha| \leq n \) and \(1 < p < \infty \)) and \(\varphi_k \to \varphi \) in \(C^n[0, 1] \). Since \(J^{-\alpha} \) is a closed operator, it follows from (11) and (12) that \(\varphi J^a g \in \mathcal{D}_{-a} \) and

\[
J^{-\alpha}(\varphi J^a g) = T_a(\varphi),
\]

Q.E.D.

We consider next the range \(-n \leq \text{Re } \alpha < 0 \) (\(n = 1, 2, \ldots \)). Note that \(\text{Re } (\alpha + n) \geq 0 \). The notation \(T_{-n}(\varphi) \) is that of Lemma 5.

Theorem 9. Let \(n \) be a nonnegative integer. Then for \(-n \leq \text{Re } \alpha < 0 \) and \(\varphi \in C^n[0, 1] \), the range of \(J^{\alpha+n} \) (i.e., \(\mathcal{D}_{-(\alpha+n)} \)) is invariant under \(T_{-n}(\varphi) \), and the \(C^n \)-operational calculus for \(T_a \) is given by

\[
T_a(\varphi) = J^{-\alpha+n}T_{-n}(\varphi)J^{\alpha+n}, \quad \varphi \in C^n[0, 1].
\]

Proof. By (10), \(\mathcal{R}(J^{\alpha+n}) \) is invariant for \(M(\varphi) \) for any polynomial \(\varphi \); it is therefore invariant for the operator

\[
T_{-n}(\varphi) = \sum_{j=0}^{n} \binom{n}{j} (-1)^j J^j M(\varphi^{(j)}), \quad \varphi \text{ is a polynomial}.
\]

Thus, for any polynomial \(\varphi \), the operator

\[
S_a(\varphi) = J^{-\alpha+n}T_{-n}(\varphi)J^{\alpha+n}
\]

is everywhere defined. Being closed, it is continuous by the Closed Graph Theorem.

Let \(g \in \mathcal{D}_a = \mathcal{R}(J^{-\alpha}) \), say \(g = J^{-\alpha}h \) with \(h \in L_p(0, 1) \). By Lemma 1,

\[
S_a(\varphi)g = J^{-\alpha+n}T_{-n}(\varphi)J^\alpha h = J^{-\alpha+n}J^\alpha \varphi(M)h
= J^{-\alpha} \varphi(M)h = \varphi(T_a)J^{-\alpha}h
= \varphi(T_a)g
\]

for any polynomial \(\varphi \).

This shows that the continuous operators \(S_a(\varphi) \) and \(\varphi(T_a) = T_a(\varphi) \) coincide on the dense subset \(\mathcal{D}_a \) of \(L_p(0, 1) \). Thus, for every polynomial \(\varphi \),

\[
T_a(\varphi) = J^{-\alpha+n}T_{-n}(\varphi)J^{\alpha+n}.
\]
Let \(\varphi \in C^a[0, 1] \), and let \(\varphi_k \) be polynomials converging to \(\varphi \) in \(C^a[0, 1] \). Since \(T_a \) and \(T_{-a} \) are of class \(C^a \) (by Theorem 6), we have (in the uniform operator topology):

\[
T_a(\varphi_k) \to T_a(\varphi); \quad T_{-n}(\varphi_k) \to T_{-n}(\varphi)
\]

for any \(k \to \infty \).

Fix \(g \in L_p(0, 1) \). Then \(T_{-n}(\varphi_k)J^{a+n}g \in \mathcal{D}_{-(\alpha+n)} \) (cf. beginning of the proof) and

\[
T_{-n}(\varphi_k)J^{a+n}g \to T_{-n}(\varphi)J^{a+n}g
\]

for \(k \to \infty \) (by (14)). Moreover

\[
J^{-(\alpha+n)}[T_{-n}(\varphi_k)]J^{a+n}g = T_a(\varphi_k)g \to T_a(\varphi)g
\]

by (13) and (14). Since \(J^{-(\alpha+n)} \) is closed, it follows that \(T_{-n}(\varphi)J^{a+n}g \in \mathcal{D}_{-(\alpha+n)} \) and \(J^{-(\alpha+n)}T_{-n}(\varphi)J^{a+n}g = T_a(\varphi)g \), Q.E.D.

3. The local \(C^k \)-operational calculus. Note first that the results of \S 2 are also relevant to the case \(p=1 \), in the sense of the local \(C^k \)-operational calculus. Let \(L = \bigcup_{1 \leq p < \infty} L_p(0, 1) \). This is a dense linear manifold in \(L_a(0, 1) \), which is invariant under \(T_a \) for all \(\alpha \in C \). Let \(n \geq 0 \) be an integer, and let \(|\text{Re} \alpha| \leq n \). If \(f \in L \), say \(f \in L_p(0, 1) \) for some \(1 < p < \infty \), then the mapping \(\varphi \in C^a[0, 1] \to T_a(\varphi)f \in L_1(0, 1) \) is continuous (\(T_a(\cdot) \) is given by Theorems 8 and 9) because

\[
\|T_a(\varphi)f\|_1 \leq \|T_a(\varphi)f\|_p \leq \|T_a(\cdot)\|_p f_1\|_p \|\varphi\|_n,
\]

where \(\|T_a(\cdot)\|_p \) denotes the norm of the \(C^a \)-operational calculus for \(T_a \) acting in \(L_1(0, 1) \). Thus \(W_n(T_a; 1) := L \) for \(|\text{Re} \alpha| \leq n \), and the \(C^a \)-operational calculus for \(T_a \) on \(L \) is provided by Theorems 8 and 9.

In the next two theorems, we study the manifolds \(W_k(T_a; p) \) for \(k < |\text{Re} \alpha| \) (they coincide with the whole space for \(k \geq |\text{Re} \alpha| \), at least for \(1 < p < \infty \), by \S 2). It turns out that the situation is totally different in the right and left half-planes.

Theorem 10. For \(\alpha \in C \) with \(\text{Re} \alpha < 0 \) and \(1 < p < \infty \),

\[
W_k(T_a; p) = \mathcal{D}_{a+k}, \quad 0 \leq k < |\text{Re} \alpha|,
\]

and the \(C^a \)-operational calculus for \(T_a \) on \(\mathcal{D}_{a+k} \) is given by

\[
T_a(\varphi) = J^{-(a+k)}T_{-a}(\varphi)J^{a+k}, \quad \varphi \in C^k[0, 1],
\]

(where \(T_{-a}(\varphi) \) is defined in Lemma 5).

Proof. Fix \(p, \alpha \) and \(k \) as in the theorem, and define \(T_a(\cdot) \) by (15). One verifies easily that the mapping \(\varphi \to T_a(\varphi) \) is an algebra homomorphism of \(C^k[0, 1] \) into \(T(\mathcal{D}_{a+k}) \) which sends the functions \(\varphi(x) \equiv l \) and \(\varphi(x) \equiv x \) respectively to \(lI|\mathcal{D}_{a+k} \) and \(T_a|\mathcal{D}_{a+k} \) (cf. Lemma 1). Moreover, for each \(g \in \mathcal{D}_{a+k} \), the mapping \(\varphi \to T_a(\varphi)g \) of \(C^k[0, 1] \) into \(L_p(0, 1) \) is continuous, since

\[
T_a(\varphi)f = J^{-(a+k)}T_{-a}(\varphi)h
\]

for \(g = J^{-a-k}h \) with \(h \in L_p(0, 1) \). Q.E.D.
In particular, $W_k(T_a; p)$ is dense in $L_p(0, 1)$ for $Re \alpha < 0$ and $k \geq 0$ arbitrary. For $Re \alpha \geq 1$, we get the "other" extreme.

Theorem 11. For $\alpha \in \mathbb{C}$ with $Re \alpha \geq 1$ and $1 < p < \infty$, $W_k(T_a; p) = (0)$ if $k < [Re \alpha]$. The same is true for $p = 1$ if α is an integer.

Proof. If α is an integer, this is a trivial consequence of Lemma 3 and Leibnitz' formula.

Suppose then that $1 < p < \infty$, and that $f \in W_k(T_a; p)$ for some fixed $k < m = [Re \alpha]$. As in the proof of Lemma 7, we apply the Phragmén-Lindelöf principle in the strip $0 \leq Re \zeta \leq Re \alpha$ to the function $\Phi(\zeta) = \langle e^{\zeta^2 \varphi(T_a)} f, g \rangle$ where φ is a polynomial and $g \in L_q(0, 1)$ (both fixed). We then obtain that $f \in W_k(T_a; p)$ for all ζ in the strip, hence in particular for $\zeta = m$. Since $k < m$, we conclude that f is the null function.

4. Similarity and spectrality.

Lemma 12. Let $\alpha \in \mathbb{C}$ and $1 < p < \infty$. Then every $s \in [0, 1) = \sigma(T_a) \backslash \{1\}$ is an eigenvalue of T_a for $Re \alpha \geq 1$ (Re $\alpha > 1$ or $\alpha = 1$ if $p = 1$), while T_a has no eigenvalue for $Re \alpha \geq 0$ (Re $\alpha > 0$ or $\alpha = 0$ if $p = 1$).

Proof. Let C_s denote the characteristic function of the interval $[s, 1)$, $0 \leq s < 1$. One verifies easily that C_s is an eigenvector of T^{-1} corresponding to the eigenvalue s (for $1 \leq p < \infty$).

By Lemma 1, (3),

$$T^{-1}J^a^{-1}C_s = J^a^{-1}T^{-1}C_s = sJ^a^{-1}C_s,$$

i.e. $J^a^{-1}C_s$ (which is in $L_p(0, 1)$ for α as in the first statement of the lemma) is an eigenvector of T_a corresponding to the eigenvalue s.

Next, suppose $T_a g = \lambda g$ for $g \in L_p(0, 1)$ and $\lambda \in \mathbb{C}$. If $Re \alpha \geq 0$ (Re $\alpha > 0$ or $\alpha = 0$ if $p = 1$), we may apply J^a on both sides of this equation; by Lemma 1, (3), we obtain

$$MJ^a g = \lambda J^a g.$$

Since M has no eigenvector $\neq 0$ and J^a is one-one, it follows that g is the zero element.

Let $\alpha, \beta \in \mathbb{C}$. By Lemma 2, T_a and T_β are similar if $Re \alpha = Re \beta$ (and $1 < p < \infty$). On the other hand, since the C^k-classification and the point spectrum are similarity invariants, it follows from Lemmas 3, 5 and 12 that T_a and T_β are not similar if α and β are distinct integers (for $1 \leq p < \infty$).

Conjecture. For $1 < p < \infty$ and $\alpha, \beta \in \mathbb{C}$, T_a and T_β are similar if and only if $Re \alpha = Re \beta$. (By Lemma 2, it would suffice to verify that T_a and T_β are not similar if α and β are distinct real numbers.)

Proposition 13. Let $\alpha, \beta \in \mathbb{C}$ and $1 < p < \infty$. Then T_a and T_β (acting in $L_p(0, 1)$) are not similar if $[Re \alpha] \neq [Re \beta]$.

Proof. Assume, without loss of generality, that $\text{Re } \alpha < \text{Re } \beta$. If either $0 \leq \text{Re } \alpha$ or $\text{Re } \beta \leq 0$, this follows from Theorem 6 and the similarity invariance of the C^k-classification. If $\text{Re } \alpha < 0 < 1 \leq \text{Re } \beta$, $W_0(T_\alpha)$ is dense in $L_p(0, 1)$ (Theorem 10) while $W_0(T_\beta) = (0)$ (Theorem 11). Thus T_α and T_β are not similar.

If $\text{Re } \alpha \leq -1 < \text{Re } \beta$, every $s \in [0, 1)$ is an eigenvalue of T_α, while T_β has no eigenvalue (Lemma 12), and the conclusion follows from the similarity invariance of the point spectrum. Q.E.D.

We next discuss the spectrality of T_α in Dunford’s sense [1].

Lemma 14. Let T be a bounded spectral operator with real spectrum, acting in the Banach space X. Let $T = S + N$ be its canonical decomposition (cf. [1]). Then:

(a) If $W_k(T)$ is dense in X for some integer $k \geq 0$, then T is of finite type $\leq k$ (i.e., $N^{k+1} = 0$).

(b) If T is of finite type k, then $W_j(T) \neq (0)$ for all $j \geq 0$; in fact, $W_j(T) \supseteq \mathcal{R}(N^{k-j})$ for $j = 0, \ldots, k-1$, and trivially $W_k(T) = X$ for $j \geq k$.

Proof. Fix a compact interval $\Delta \supseteq \sigma(T)$. Let $S(\cdot)$ be the C-operational calculus for S (defined on $C(\Delta)$), and let $\|S(\cdot)\|$ be its norm.

(a) Let $x \in W_k(T)$. The function $e^{itN}x \ (z \in \mathbb{C})$ is entire of order one and minimal type (since N is a quasi-nilpotent operator). For $z = t \in \mathbb{R}$, we have:

$$\|e^{itN}x\| \leq \|S(\cdot)\| \|e^{itT}x\| \leq \|S(\cdot)\| \|x\|_{k} \|\varphi_{1,k,\Delta}\|,$$

where $\varphi_{k}(s) = e^{its}$, $t, s \in \mathbb{R}$.

Thus $\|e^{itN}x\| = O(|t|^k)$, and therefore $e^{itN}x$ is a polynomial of order $\leq k$ by Theorem 3.13.8 in [3]. Hence $N^{k+1}x = 0$ for each $x \in W_k(T)$, and it follows that $N^{k+1} = 0$ since $W_k(T)$ is dense in X.

(b) We have $N^{k+1} = 0$ and $N^k \neq 0$. The analytic operational calculus for T takes the form (cf. [1]):

$$T(\varphi) = \sum_{m=0}^{k} S(\varphi^{(m)})N^m/m!$$

If $x \in \mathcal{R}(N^{k-j})$, say $x = N^{k-j}y$ with $y \in X(0 \leq j < k)$, then

$$T(\varphi)x = \sum_{m=0}^{j} S(\varphi^{(m)})N^my/m!$$

In particular, $\|p(T)x\| \leq \|S(\cdot)\| \max_{0 \leq n \leq j} \|N^ny\| \|p\|_{1,\Delta}$ for any polynomial p, i.e. $x \in W_j(T)$. Q.E.D.

For simplicity, we state the following result for $1 < p < \infty$, although part of the conclusion remains valid for $p = 1$.

Proposition 15. Let $1 < p < \infty$. Then T_α is spectral for $\text{Re } \alpha = 0$, and is not spectral for $|\text{Re } \alpha| \geq 1$.

Proof. The first statement is a trivial corollary of Lemma 2.
By Theorem 6, T_a is of class C^n if $n \geq |\text{Re } a|$. Thus, if T_a were spectral, it should be of finite type by Lemma 14(a). In particular, its point spectrum should be at most countable by [2, Theorem 1, p. 56]. But this contradicts Lemma 12 if $\text{Re } a \leq -1$. Also all $W_j(T_a)$ ($j \geq 0$) should be nontrivial by Lemma 14(b), contradicting Theorem 11 if $\text{Re } a \geq 1$. Thus T_a is not spectral for $|\text{Re } a| \leq 1$.

5. Remarks. It is interesting to regard the results of this paper as statements about the operators $\alpha^{-1}T_a = J + \alpha^{-1}M$ ($0 \neq \alpha \in C$), which are perturbations of J by a scalar operator of arbitrarily small norm. Thus, if α and β are nonzero complex numbers, the following assertions can be made (for $1 < p < \infty$):

(a) If $\|\text{Re } \alpha\| \neq \|\text{Re } \beta\|$, $J + \alpha^{-1}M$ and $J + \beta^{-1}M$ belong to distinct (C^k)-classes, although they differ only by the scalar operator $(\alpha^{-1} - \beta^{-1})M$, which is of arbitrarily small norm. This shows that the commutativity hypothesis in [5, Corollary 5.6] cannot be replaced by a restriction on the norm of the perturbing scalar operator.

(b) The perturbations $J - \alpha^{-1}M$ and $J + \alpha^{-1}M$ have respectively a dense and a trivial semisimplicity manifold, a "pure" point spectrum (up to the right end point of the spectrum $[0, \alpha^{-1}]$) and no point spectrum.

(c) The perturbations $J + \alpha^{-1}M$ and $J + \beta^{-1}M$ are not similar if $\|\text{Re } \alpha\| \neq \|\text{Re } \beta\|$.

REFERENCES

Yale University,
New Haven, Connecticut