
COHOMOLOGY OF ALGEBRAS OVER HOPF ALGEBRAS

BY

MOSS EISENBERG SWEEDLER

We present a cohomology theory for algebras which are modules over a given

Hopf algebra. The algebras are commutative, the Hopf algebra cocommutative and

under the module action the underlying coalgebra of the Hopf algebra " respects "

the multiplication and unit in the algebras.

The cohomology is defined by means of an explicit complex. Whenever C is a

coalgebra and A an algebra Horn (C, A) has a certain natural algebra structure.

The groups in our complex consist of the multiplicative group of invertible ele-

ments in Horn (C, A) where C is the underlying coalgebra of the Hopf algebra

tensored with itself a number of times. The complex arises as the chain complex

associated with a semi-cosimplicial complex whose face operators are induced

by maps of the form (g)'l+1 H-+ (g)n H, h0 <g>- • • <g> «„-► h0 ®- • • <g> «i«i + l

® • • • <8> hn. Under Horn (*, A) these maps become coface operators.

Familiar examples of Hopf algebras are the group algebra kG of the group G

and the universal enveloping algebra UL of the Lie algebra L. If the commutative

algebra A is an admissible &G-module then the Hopf algebra cohomology H'(kG, A)

is canonically isomorphic to H'(G, A'), the group cohomology of G in the multi-

plicative group of invertible elements of A. If A is an admissible UL-moduie, then

for /> 1 the Hopf cohomology H\UL, A) is canonically isomorphic to H*(L, A +),

the Lie cohomology of L in the underlying vector space of A. If A has enough

nilpotent elements then H1(UL, A)^H1(L, A+). All the preceding isomorphisms

arise from isomorphisms on the complex level.

We consider relative cohomology and show how an injective (surjective) algebra

morphism A -*■ Ä can give rise to a long exact cohomology sequence relating

//*(//, A), H*(H, Ä) and the relative cohomology groups. Using relative co-

homology one can completely recover the usual group (Lie) cohomology theory

for modules. One considers the module as a trivial algebra and adjoins a unit to

form A. The injection of the ground field into A gives rise to relative cohomology

groups which are precisely the classical cohomology groups of the group (Lie

algebra) with coefficients in the module.

The last comparison is that of H*(H, A) with the Amitsur cohomology of A.

First we show that there always is a natural transformation from the Amitsur

cohomology of A to //*(//, A). We then specialize to the case that A is a finite

field extension and give conditions on A and H which imply the natural trans-

formation is an isomorphism. We also show that many field extensions A can
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satisfy these conditions ; such as, separable normal extensions, purely inseparable

extensions which are the tensor product of primitively generated extensions, etc.

The last half of the paper is devoted to studying extensions. An extension of an

algebra by a Hopf algebra is itself an algebra and has further properties. We

describe equivalence and product of extensions and arrive at the usual result that

H2(H, A) is isomorphic to the group of equivalence classes of extensions. Part of

the theory involves the definition of certain algebras which we call crossed products.

They generalize existing instances of crossed products.

The extension theory is particularly interesting for field extensions A, where A

and 77 satisfy certain conditions. (These conditions imply that the Amitsur co-

homology is isomorphic to 77*(77, A).) When the conditions are satisfied any

crossed product of A by 77 is a central simple algebra (over the ground field) with

splitting field A. This leads to an isomorphism between 772(77, A) and the subgroup

of the Brauer group over A consisting of classes split by A. One of the key results

needed to give the isomorphism is the existence of "inner" coalgebra actions. This

result generalizes known results about inner automorphisms and derivations.

1. Preliminaries. All vector spaces are over the ground field A, which has

characteristic/;. A coalgebra is a vector space C equipped with maps A : C -*■ C ® C

and e: C^ k satisfying (7 $ A)A=(A ® 7)A and (e ® 7)A = 7=(7 <g> *)A. The first

identity is called coassociativity, A is called the diagonal map and e is called the

counit or augmentation. If C is a coalgebra the structure morphisms pertaining to

C may be denoted Ac and ec, to avoid confusion. Similarly, if A is an algebra the

structure morphisms may be denoted mA: A ® A -> A and pA: A -*■ A, (X-+ XI).

When no confusion can arise we omit the subscripts C and A.

For ceCwe write 2(o c(1) <g> c(2) to denote A(c), 2(o c<ii ® ca, ® e<» to denote

(A <g> 7)A(c), etc. An n-linear map /: C © • ■ • © C -> V induces a linear map

/: C <g> • • • <g> C ->■ V; let Lo/fon, • ■ ■, c(B)) denote /(2(c) c<i> <S> ■ • • <8> c(B)). In this

notation the identity relating e and A becomes 2(o e(cw)c(2) = c='2.ic) ca)e(ci2)).

If V and W are vector spaces we use f to denote the twist map t : V <g> W->

W ® V, v <g> w-±w ® v. A coalgebra C is called cocommutative if fA=A or for

all ceC, 2(o £<i) ® c<2> = 2(o C(2) <8> c(1). If C is a cocommutative coalgebra we

can permute the numerical subscripts arbitrarily in any computation involving

2(c) Ca> <g> • • • <g> C(n).

If C and D are coalgebras then C ® D is a coalgebra where AC(8D = (7(g) t ®7)

•(AC®AD)     and     ec®D = ec ® «D.     Thus     AcglD(c <8> ¿) = 2(o,«i> foi» ® da))

® (C(2)  <8> ¿(2)).

A Hopf algebra 77 is an algebra and a coalgebra where the coalgebra structure

morphisms AH, eH are algebra homomorphisms. Thus for example, AH(g/t) =

2(i).(«) ITdAn ® g(2)«(2), g, « £ 77. If F is a left 77-module then F ® F is naturally

a left 77 <g> 77-module. By pull back along A:77->77®77, F® V becomes a left

77-module. Specifically, h ■ iv ® v) = 2«i) «u> •ü ® w(2> ■ »• The augmentation

e: H->k gives A the structure of a left 77-module.
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Definition. An algebra A which is a left //-module is called a (left) H-module

algebra if mA and pA are //-module morphisms. A coalgebra C which is a left

//-module is called an H-module coalgebra if Ac and ec are //-module morphisms.

(A <g) A,k, C ® C each have the //-module structure indicated in the preceding

paragraph.)

If A is an //-module algebra then h-(aä) = '2t(M(ha)a)(h(2)-ä) and h-i=e(h)i.

If C is an //-module coalgebra then Ac(« • c) = 2<h),(o ("<d • C(d) ® (A(2> • c(2)) and

ec(«-c) = £if(«)£C(c).

Example 1.1. Let C be the underlying coalgebra of H and let C have the left

//-module structure induced by multiplication. The fact that AH is an algebra

morphism implies that Ac is an //-module morphism. The fact that eH is an algebra

morphism implies that ec is an //-module morphism. Thus C is an //-module

coalgebra.

Example 1.2. We generalize the above example. For a vector space K and

0<q e z let (g)* V denote V ® ■ • ■ ® K <¡r-times. 0" H has the coalgebra structure

on the tensor product of coalgebras. 0" H is a left //-module where

« • («i ® • • • ® «,) is defined to be (hhx) ® /¡2 ® ■ • • ® «,. Then the induced //-

module structure on ((g)* //) ® ((g)« H) is given by

«• [(«i ® • • • ® K) ® (hx ®• • • ® «,)]

= 2 Pu>*i) ® *a ®- • ■ ® A,] ® [(A(a)Äi) ® h ®- ■ • ® ÄJ.

For the same reasons as in Example 1.1, (g)5 H is an //-module coalgebra.

We let (g)0 K denote k for any vector space V. If (g)° // has the //-module struc-

ture induced by e and the usual trivial coalgebra structure it is an //-module

coalgebra. (It also is an //-module algebra.)

Example 1.3. If G is a semigroup, by which we mean that G is associative has

a unit but may lack inverses, then the (semi)group algebra kG has a Hopf algebra

structure where A(g)=g ® g, e(g) = 1, for g e G. Suppose G is a semigroup of unit

preserving homomorphisms of an algebra A. The induced fcG-module structure on

A gives A a &G-module algebra structure.

Example 1.4. Suppose L is a Lie algebra with universal enveloping algebra

UL. Then UL has a Hopf algebra structure where A(/)= 1 ® /+/ ® 1, e(/)=0 for

leL, [12, p. 152, Theorem 1]. If L is a Lie algebra of derivations on an algebra A,

there is induced a UL-moduie structure on A with respect to which A is a UL-

module algebra.

If C is a coalgebra and A an algebra then Horn (C, A) has an algebra structure.

For fige Horn (C, A) the product f* g is mA(f ® g) Ac. Thus for ceC, f* g(c)

= 2(c)/(c<i))g(c(2)). The unit of Horn (C, A) is p,Aec. This product of functions is

called convolution. If C is a cocommutative coalgebra and A is a commutative

algebra then it is clear that Horn (C, A) is a commutative algebra.
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Definition. If A is an algebra A" denotes the multiplicative group of invertible-

regular-elements of A. If C is a coalgebra and A an algebra Reg (C, A) denotes

Horn (C, A)r.

Observe Reg (C, A) is a multiplicative abelian group when C is cocommutative

and A is commutative.

Suppose C is an //-module coalgebra and A an //-module algebra. HomH (C, A)

denotes the //-module morphisms from C to A. Clearly p.Aec e HomH (C, A).

Suppose fige HomH (C, A) then

h■ [f* g(c)] = 2h~ L/X%>)s(c<2>)] =   2  (*0)■/(ca>)XA<2> /(«*))
(c) (ft).(c)

=   2 /(Äa)-C(1))g(A(2)-c(a))=/*g(A-c),
(W.(c)

for he H, ce C. Thus HomH (C, A) is a subalgebra of Horn (C, y4) and we define

RegH (C, /f) to be Homw (C, /i)r. This is the subgroup of Reg (C, A)D consisting

of all //-module morphisms.

2. Definition of the cohomology. Throughout the paper H will denote a co-

commutative Hopf algebra; i.e., where the underlying coalgebra is cocommutative

and A will denote a commutative algebra.

We form a semisimplicial complex [7, p. 55], [8, p. 56], whose objects are the

//-module coalgebras {(g)5 + 1 //}0g0 of Example 1.2. The object of ^-degree is

(g)a + 1 H for q=0, 1,.... The face operators are given by d, : (g)«+ x H -* (g)« H,

(*o®• • • ® xq) -»■ (*o ®• ■ • ® *f*i+i ®• ■ ■ ® x„) for /=0,..., q-\ and

0,: (g)'+1 //-> (g)5 //, (*„ ® • • • ® xq.x)e(xg).

The degeneracy operators are given by St'. (g" + 1 H->■ (g)',+2 //, (x0 ® • • • ® x„)

-> (x0<8> • • • ® *i ® 1 ® xt + ! ® ■ • • ® x,) for /=0,..., q. All the face and degeneracy

operators are //-module coalgebra morphisms; i.e., //-module morphisms and

coalgebra morphisms. We omit the calculations verifying the face-degeneracy

operator identities.

Suppose A is an //-module algebra. We have the contravariant functor

RegH (*, A) from cocommutative //-module coalgebras to abelian groups. We

apply this functor to the above semisimplicial complex to obtain a semi-cosimplicial

complex whose objects are {RegH ((g)"+ 1 H, /4)},6o. We denote the coface op-

erators, RegH (0„ A): Reg^ttg" H, A) -> Reg„ ((g)'+ 1 H, A), by & for /=0, ...,<?.

The homology of the semi-cosimplicial complex is defined by means of the differ-

ential dq'x:Reg„(<S)qH, ,4)-* Reg„ ((g)^1//, A) where d"-1 = (d°) * (d1)'1 *

• • • * (d")±1. Thus we have

RegH ((g)1 //, A)-+ RegH ((g2 H,A)—>-► RegH «g» + 1 //, A) —►■ • •.

The cohomology of H in A is defined to be the homology of the above complex

and the qth group—Ker dvfim d""1 for q>0 and Ker d° for q=0—is denoted

H"(H, A).
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(In [17, p. 235] the homology of a semisimplicial complex is defined. Our complex

is obtained from a contravariant functor applied to a semisimplicial complex;

hence, is a semi-cosimplicial complex. By dualizing the theory in [17, p. 235] one

obtains the above homology of {Reg« (0«+1 77, A)}.)

Remark. Since (g1 77=77 and we have e: 77-> A it seems as if

<g)2 77 i=± 77 -!* A

is a semisimplicial resolution of A to which we are applying the functor Reg« (*, A)

and taking homology. In this sense the cohomology seems similar to the right

derived functors of Reg« (*, A).

There is a normal subcomplex of our simplicial complex

{Regw((g)' + 177,^),^},ao.

For q > 0 let

S' = Reg« (Si, A) : Regjf ((g)'+2 77, A) -+ Reg« ((g)'+1H,A),   i = 0,...,q.

Let  A"+a = Kcrj°rv..nKeri«.   For  q=0   let   N° = RegH ((g)177, A).   Then

{A", d^N^^o is a subcomplex of {Reg« ((g"*1 77, A), dq}qzo- The injection map

induces an isomorphism of homology. (The dual result and proof can be found in

[17, p. 236, Theorem 6.1].)

We now present realizations of the complexes

{RcgH(0"+1H,A),d"Uo   and   {N<,d<\N%i0-

There is a natural algebra isomorphism Horn« ((g)' 77, A) -+ Horn ((g9-1 77, A)

induced by (g« ~ l 77 -> (g« 77, x -»■ 1 ® x. This induces an isomorphism

t: Reg« «g>« 77, A) -* Reg «g«"1 77, A).

Let <ji: H ® A-+ A, h ® a^-h-a; then with respect to i the coface operator

a0: Reg« ((g)« 77, /I) -*■ Reg« ((g«+1 77, /I) corresponds to the map

8°: Reg ((g"-1 77, ¿) -* Reg ((g«,77, ¿),   /-> 0(7 ®/).

For i=\,.. .,q—\ the coface operator & corresponds to 8f: Reg ((g«-1 77, A)

-> Reg ((g)« 77, A),f-+f(I ®--®7®m®7®---®7), where m is in the ¿th

position. The coface operator ô« corresponds to the map 8«: Reg((g«_1 77, .4)

-> Reg ((g)« 77, A),f^>-f® e. Thus if we define the differential

D«- ' : Reg «g« -1 H, A) -> Reg «g« 77, ¿),

T^V) = W ®f)] * \f-\m ® I ® • • ■ ® 7)]

* [/(7 ® m ® 7 ®- • • ® 7)] *• • •* [/"i/ ®- ■ • ® 7 ® m)\

*[/T1 ®4

>)«+177
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the simplicial complex {Reg ((g" H, A), />"}9a0 is isomorphic to the simplicial

complex {RegH ((g"""1 H, A), </"},è0 which defines the cohomology H"(H,A),q = 0.

Letlt:®«#-»»0, + 1tf, hx ®---®A,^A1 ®---® A,® 1 ® A,+1 ®---®A„

i=0,...,q. With respect to i the codegeneracy operator si:RegH(0q+2H,A)

-+ RegH ((g5 + x H, A) corresponds to the map a' : Reg ((g)"+x H, A) -*■

Reg ((g« //, ii), /-*■/% We define (for q^O)

RegV » (H, A) - Ker lx n • • • n Ker 1,

and Reg° (//, ¿) = Reg (<g)° //, ¿). Then {Reg«+ (H, A), D\ = Z>'|Reg«+ (H, A)}q¿0

is a subcomplex of {Reg ((g)" //, A), D"}q^0 which is isomorphic to {A™, dq\N9}q±0

under the restriction oft. Thus {Reg"+ (H, A), /)+}aa0 is a normal subcomplex and

the inclusion map induces an isomorphism of homology.

Note that if q>0 and fe Reg'+ (H, A) then f(hx ®- •• ® hq) = e(hx)- ■ e(hq) if

some A, g Â: ; in particular/(l ® • • • ® 1) = 1. We introduce the notation Reg" (//, A)

to denote Reg ((g)* H, A). Thus the simplicial complex {Reg ((g* //, A), />*}0äo

will be denoted {Reg* (//, /4), D"},^, and referred to as the standard complex to

compute H"(H, A).

We briefly look at Hl(H, A) for /=0, 1. Reg0 (H, A) ~ Ar and if a g H°(H, A)

then (A• a)a~x = e(h) for all heH. Thus A • a = e(A)a for all A g //. We denote by ¿H

the set {aeA\ha = e(h)a for all heH}. This is a subalgebra of ,4 since A is an

//-module algebra. Suppose aeA'nA". For all heH, e(h)=hl=h(aa~x)

= 2(«) (A(D• a)(A(2) a'x) = 2m e(hm)a(h{2)■ a~x)=a(h■ a~x) which implies a~x e A"

n Ar. Thus //°(//, /i) = ^Hr. Note, A" is just the "invariants" with respect to the

Hochschild theory, [6, p. 170].

Iff: H^Aisa 1-cocycle then p.(e ® e) = Dx(f) = [<p(I ®/)] * [f-xm] * [f ® e]

or fm= [<p(I ®/)] * [f ® e]. This implies for all g,he H that

/(**)= 2 (fti)-/(A<i)))(/(ft»HA(»)) = 2 (ft« ■■/■(*))/(«»)•
(9>,(n) (9)

In case y4 = y4H this reduces further to f(gh)=f(h)f(g) so that fis a homomor-

phism. In general/is a "crossed" homomorphism and HX(H, A) is the group of

regular crossed homomorphisms modulo the subgroup of regular inner crossed

homomorphisms. An inner crossed homomorphism is one of the form Dx(d) for

a e A. For A g H, D\a){h) = (A ■ a)a "x.

We point out that there is a dual theory to the preceding for cocommutative

coalgebras which are comodules over commutative Hopf algebras. They must be

comodule coalgebras—the dual notion to "//-module algebra". The functor is the

group (under convolution) of invertible comodule morphisms from the coalgebra

to the objects, which are algebras, in the semi-cosimplicial complex. The algebras,

which are the objects, consist of the Hopf algebra tensored with itself a number of

times. The coface operators are maps of the form /®-®/®Afi®/®--®/

and p.a ® / ® • • • ® /, (where fí is the commutative Hopf algebra). The co-

degeneracy operators are maps of the form /®-®/®e®/®-®/. This
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theory may be useful in the area of affine algebraic groups where the commutative

Hopf algebra is taken to be the coordinate ring of the algebraic group. Rational

modules for the group correspond to the comodules for the Hopf algebra.

3. Comparison with group cohomology. Suppose G is a group and kG is the

group algebra Hopf algebra as in Example 1.3, (which is cocommutative). Let A

be a AG-module algebra. The elements of G act as automorphisms of A so they

carry A" into itself. By restricting the module action the multiplicative abelian

group Ar becomes a (/-module and we can consider the group cohomology
77«(G, Ar).

Theorem 3.1. H"ikG,A) and HqiG,Ar) are canonically isomorphic for all q.

The isomorphism is induced by a canonical isomorphism between the standard

complex to compute H"ikG, A) and the "standard complex" to compute 77 «(G, A7),

[20, p. 121, (**)].

Proof. For gx,..., gq e G the element gx ® • • • ® gq e kG ® • • ■ ® AG diagonal-

izesA^ ®---®g,) = (g1 ®---®g„) ®(gi ®---®g,).Thus/"1(g1 ®---®g„)

= [figi ® • • • ® gq)]-l and/(g! ® • ■ ■ ® g,) e Ar for all/£ Reg« (AG, A). The map

Gx-xG^-AG®-® AG, gx x ■ ■ ■ x g„ ->• gx ® • • • ® gq induces the group

homomorphism Reg« (AG, A) -> Homset (Gx • ■• xG, A") which is a group

isomorphism since {gx ® • • • ® gq | gx x ■ ■ ■ xgq e Gx ■ ■ ■ x G} is a basis for

AG®- -®AG. When q=0, Reg0 (AG, A) = Reg (A, A) which is canonically

isomorphic to Ar the 0th group in the standard group cohomology complex. The

group isomorphisms Reg« (AG, A) -* Homset (G x • • • x G, A') and Reg0 (AG, A)

-> AT form a morphism of complexes.   Q.E.D.

Example 3.1. If A is a field which is a finite Galois extension of A, G is the

Galois group of A over k and the action of AG on A is induced by the action of G,

it follows from Theorem 3.1 that 77«(AG, A) is precisely the Galois cohomology.

By [19, p. 330, Theorem 1] this is the Amitsur cohomology of A. In §5 we relate

Amitsur's cohomology to the Hopf algebra cohomology. This will give a simple

direct proof that 77 «(AG, A) is isomorphic to the Amitsur cohomology.

Example 3.2. Suppose G is a group and V is a vector space which is a G-

module; hence, a AG-module. We consider Kto have trivial multiplication and let

A=k@ V, F with a unit adjoined. Thus (A, u)(Ä, ¿5) = (AÂ, Xv+Xv). A has a AG-

module algebra structure where we define g (A, v) to be (A, gv) for ge G. AT is

naturally isomorphic to the direct sum of the multiplicative group kT and the

additive group V, where an isomorphism is given by krx V-+ Ar, iXx v)-+ (A, v).

Thus HiikG,A) = H\G,kTxV). We shall show in §6 that H\G,V) can be

recovered from 77'(AG, A) as a relative cohomology group. It will be a direct

summand of 77'(AG, A).

4. Comparison with Lie cohomology. Although we give a proof of our main

result which is independent of characteristic we first give a proof for characteristic
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zero. In this case the proof is much simpler but contains the main technique of the

general proof.

Suppose L is a Lie algebra and UL is the universal enveloping Hopf algebra

as in Example 1.4. (UL is cocommutative since UL is generated by L as an algebra

and A(/) = l ® /+/ ® 1 for all leL.) Let A be a t/L-module algebra and let A +

denote the underlying vector space structure of A. By restricting the module action

A+ becomes an 7,-module and we can consider the Lie cohomology 77«(L, A+).

Theorem 4.1. Suppose p ithe characteristic of k) is zero. H"(UL, A) and

H"(L, A+) are canonically isomorphic for q^2. The isomorphism is induced by a

canonical isomorphism of complexes between the rth groups of the normal complex

to compute the Hopf cohomology of H"(UL, A) and the rth groups of the normal

complex [6, p. 175-176] to compute the Hochschild cohomology of H"(UL, A + )for

r^l.

Proof. In [6, p. 175-176] the normal complex to compute H"(UL, A+) has

groups Cn={fe Horn ((g)n UL, A) \ fiXx ® • • • ® An)=0 if some A, £ A} for n > 0

and C0=A + . The differential is given by

Sn(/)(Ai ®- • • ® AB+1) = XxfiX2 ®- • • ® An + 1)

+ 2 (- Wi ® ■ • ■ ® A<A' + i ® • ■ ■ ® A"+i)
i

+(-ir+y(A1®--.®AnMAn+1)

for n > 0, and for n=0, a e A+, S°(a)(A) = Aa - ae(A).

We now give a group isomorphism from Cn to Reg" {UL, A) for n 2; 1 ; we do this

by means of an exponential map. Suppose fe C„ and g e Horn ((gn UL, A), then

/* g £ C„ since A(l) = 1 ® 1. Thus Cn is an ideal in Horn (<g)n UL, A).

Horn iJJL, A) is a left i/L-module if we define «—*/ by setting (u-^f)(v)

=f(vu) for fe Horn (UL, A) u,ve UL. The identity of Horn (UL, A) is pc and

(u —* /ie)(i>)=v<e(vu)=/u(c(t;)£(«)).  Thus  u-* pe=e(u)pe.   For /, g £ Horn (UL, A)

[u -> (/* g)](t>) = (/* g)(t;tO =   2 f(vii)ua))giV(vU(2))
(u).(u)

= 2 ("<i> ~*/) * ("<» "^ s)(p).
(u)

Thus Horn (C/L, A) is a left C/L-module algebra. In particular since A(/)= 1 ® /

+ / ® 1 for / s L, the elements of L act as derivations on Horn (UL, A).

Suppose fe Cx, we shall show by induction that for any g e Horn (UL, A) and

lx,...,lneL then/" * g(lx- ■ -ln)=n\f(lx)- ■ f(ln)g(\). The result is clear for n= 1

since/* g(/i)=/(/i)g(l)+/(l)g(/i)=/(/i)g(l). Suppose the result has been proved

for n — 1.

fn*g(h-   In)  = ff*'1 * (ln-f)*g(h- -In-ù+f1 * (¡n^gWl-   ln-ù-
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By the induction the first term on the right hand side equals n(n — i)\f(lx)- ■ ■

/(4-iMtti -*f) * g(l)]="!/(/i)- • -/('n)g(l)- Also, by the induction the second term

on the right equals (n-l)lf(h)- ■ -f(K-x)[f* (/, -g)(l)] = 0 since /* (/„-g)(l)

=0. This concludes the induction.

The main two implications of the preceding paragraph are that fn(lx ■■•/„)

=«!/(/i)- • KQ and for »>r/»(/r • -lr)=f *f-'Qv- •/,)=<>, for fe Cx, lx,...,
lreL. It is well known, [12, p. 152, Theorem 1], that UL is spanned by monomials

of elements of L. Thus if x e UL, fn(x) = 0 for large n.

By [6, p. 268, Proposition 1.2] (gn UL is isomorphic to the universal enveloping

algebra of L ©• • • © L (« times). One easily checks this is an isomorphism of Hopf

algebras. Clearly forfe Cn,f(i ®- • • ® 1)=0 so that by the preceding paragraph

with L replaced by L © ■ ■ • © L it follows that if x e (gn UL,fm(x)=0 for large m.

Let e=p.(e ® • ■ • ® e) the unit of Horn ((gn UL, A). For feCn we define expf

= e+2T /'/'!• This is a well-defined element of Horn ((g)n UL, A) since for

JCG(gn UL, (e\pf)(x) = e(x) + 2ifi(x)li\ and the sum is actually finite. If x=Xx

®-®An and some AjgA: then /'(*)=0 since fi e Cn; thus, (exp f)(x) =

p(e(Xx)- ■ e(An)), which implies (expf) e Reg+ (UL, A). By formal considerations

exp (f+g) = (expf) * (expg) for/, g e C„, so that exp is a group homomorphism

from the additive group C„ to the multiplicative group Reg" (UL, A). To show that

exp is an isomorphism we construct the inverse, log.

For/g Regn+ (UL, A),f-eeCn. Thus if we define log/=2" (-1),_1(/-*)*/*>

log/is a well-defined element of Cn. By formal considerations log is a group homo-

morphism from Reg" (UL, A) to Cn which is the inverse to exp. Next we show that

the group isomorphism exp forms an isomorphism of complexes (in positive

degree).

The maps Horn (<gn UL, A) -► Horn ((gn+x UL, A)

/->^(/®/),

/->/(« ®/®---®/),

/-►/(/®-  •®/®m),

/-»■/®«

are algebra morphisms, (i/i: UL ® A ->■ ̂4, « ® a -> wa). Let F be one of the above

maps, then F(fn) = F(f)n for all fe Horn (<g)n C/L, A). If /e Cn this implies

F(exp/) = exp F(/). This shows exp is an isomorphism of complexes (in positive

degree). By [6, p. 282, Theorem 8] the Hochschild cohomology of H"(UL,A+) is

equivalent to the Lie cohomology H"(L, A+).   Q.E.D.

We briefly investigate the relationship between H'(UL,A) and H'(L,A+) for

/=0, 1. H°(L, A+)={aeA+ \ la=0 for all lei), [6, p. 270, §2]. The elements of

H°(L, A+) are called the invariants of A. H°(L, A+) is a subalgebra of A since the

elements of L act as derivations. Since UL is generated by L it follows that

H°(L,A+)=AUL. Thus H°(UL, A)=AVLr = H°(L, A+)r.
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Proposition 4.2. Suppose p = 0 and A = H°(L,A+)+I where I is the ideal

consisting of all nilpotent elements of A. Then, H1(UL, A)^H1(L, A+) and the

isomorphism is induced by the isomorphism of complexes (in positive degree) given

in Theorem 4.1.

Proof. Since exp is an isomorphism of complexes in positive degree it carries the

1-cocycles of Cx isomorphically onto the 1-cocycles of Reg+ (UL, A). It suffices to

show that exp is an isomorphism between the 1-coboundaries.

Suppose 8°(a) is a 1-coboundary in Cx. Since A = H°(L, A+) + Iv/e may assume

a £7. Thus exp a = 1 + 2? a'/* ! is defined since a is nilpotent. Then exp 8°(a)

= D°+(exp a) so that exp carries the 1-coboundaries of Cx into the l-coboundaries

of Reg1* (UL, A).

Suppose D°+ (a) is a 1-coboundary in Reg+ (UL, A) where a e A\ By hypothesis

a=b + x where b e H°(L, A+), x e I. Since b=a—x it has inverse a'1 + a~2x

+a~3x2+a~tx3+a~sxi+ ■■ ■ which is well defined since x is nilpotent. Let z

= l+b~1x, then a=bz and z is invertible. D°+(a)(lx■ •-l„) = [(lx-■ -ln)-bz\\bz

= l(h -In)- AI 2 since b e H°(L, A*). Since L generates UL it follows that D°+ (a) =

D°+(z). We have z-\=b-xx el so that log z=2f (- \)i-1(b~1x)i¡i is defined and

lies in 7. Clearly z=exp log z and D°+ (z) = exp 8°(log z). Thus exp carries the 1-co-

boundaries of Cx surjectively to the 1-coboundaries of Reg+ (UL, A).   Q.E.D.

We now prove Theorem 4.1 for arbitrary characteristic. The proof is substantial-

ly the same, the main technique being the use of the group isomorphism exp and

its inverse log. However, the definition of exp and log and verifying that they are

morphisms of complexes is more difficult than before.

Theorem 4.3 For arbitrary characteristic H"(UL, A) and Hq(L, A+) are canon-

ically isomorphic for <7 ä 2. The isomorphism is induced by a canonical isomorphism

of complexes between the rth groups of the normal complex to compute the Hopf

cohomology of H"(UL, A) and the rth groups of the normal complex to compute the

Hochschild cohomology of Hq(UL, A +)for r^ 1.

Proof. The normal complex to compute the Hochschild cohomology of

H"(UL, A+) is the complex {C„, 8n} which is exhibited in the proof of Theorem 4.1.

CB is an ideal in Horn ((g)" UL, A) and Horn (UL, A) is a left t/L-module algebra

as indicated in the second and third paragraphs of the proof of Theorem 4.1.

By restricting the action Horn (UL, A) is a left L-module and the elements of L

act as derivations. For fe Cx we define a sequence of elements °f, xf, 2f,... in-

ductively, ('/should be thought of as/'//!). Let °f=pe the unit of Horn (UL, A)

and let 1f=f Suppose n_1/has been defined where /^'/='-1/* (/-^/) for

leL, l¿i£n—l. Let A' be a one-dimensional vector space with basis x.

Horn (UL, A) © X has an L-module structure where '-» (u, Xx) is defined to be

/--«+AC-1/) *(/--/) for u e Horn (UL, A), Xek,leL. Horn (UL, A) ®X

has a natural left C/L-module structure induced by the L-module structure [5, p. 39].

Horn (UL, A) is a submodule, and the module structure is that which was given
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originally. If u lies in the kernel of the augmentation of UL—known as the aug-

mentation ideal—then u is the sum of monomials of L, [12, p. 159, Theorem 3], so

that u -* x g Horn (UL, A). nf(u) is defined to be (u -» x)(i) and n/(l) is defined

to be 0 ; since UL is the direct sum of k and the augmentation ideal "/ is well

defined. By construction

(0) /-»/=-!/• (/-/),       leL

and {°fi xfi ...} is the unique sequence of elements of Horn (UL, A) satisfying (0)

(for all positive n), °/= 1. 7=/and n/(l)=0 (for all positive n).

Using the uniqueness property and induction one obtains the following:

(i) n(f+g) = 2 ('/) * (""'*)>
0

(2) r/KY) = (W^")(m+Y)

(3) T(/)) = ((«») \fm ! (« !)m)(mn/),

(™/)*A(/1-/r) = 0 ifr<«,

-/ft)-   -/(/n)A(l)   ifr = «,

where f,geCx, he Horn (£/L, /Í), lx,...lTeL. (Note, in (4) the induction is on

n+r.)

Since £/L is generated by L, by (4), 2?'/=exp/ and 2?/!(-l)'(i + 1/)

= log(/+/Lte) are well-defined elements of Horn (t/L, A) when /g Ci. By the

identities (l)-(3) exp is an isomorphism from the additive group Cx to the multi-

plicative group Reg+(C/L, A) with log being the inverse isomorphism.

Suppose M and N are Lie algebras by [6, p. 268, Proposition 1.2], the tensor

product of universal enveloping algebras is (isomorphic to) a universal enveloping

algebra. Let ip: UL ® A -+ A, u ® a -> u-a. We have the following identities:

exp (</<(/ ®/)) = ip(I ® exp/) g Horn (UL ® UM, A)

forfe Horn (UM, A)   where /(l) = 0,

exp (/(/ ® m ® /)) = (exp/)(/ ® m ® /) g Horn (Í/L ® C/Af ® UM ® LW, ,4)

(6) for/G Horn (£//_ ® Í/M ® E//V)   where/(l ® 1 ® 1) = 0,

exp (/ ® e) = (expf) ® e g Horn (UL ® C/M, yi)

for/G Horn (UL, A)   where/(l) = 0.

Since the proofs of these are similar we only present the proof of (5). It suffices

to show for all « that

(8) W®/)) = «/®"/)-

Suppose this has been shown for0<n— 1. UL ® UM—as the universal enveloping

algebra of L © M—contains L in the space L ® k and M in the space k ® M.
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By the uniqueness property (0), it suffices to show the derivation / ® 1 gives the

same element applied to either side of (8) and the derivation 1 ® r gives the same

element applied to either side of (8), leL, reM.

(/ ® 1) - "(0(7 ®/)) = "-W ®/)) * [(/ ® 1) - 0(7 ®/)]

= [0(7 ® "-1/)] * [0(7 ® /•/)] = 0[(7 ® ("-1/* (/•/))]

= 0[7 ® /•"/] = (/ ® 1) -- 0(7 ® "/),

where for all g e Horn iUM, A) l-g is the function u -+ l-g(u), u e UM. The first

equality above follows from (0), the second by induction, the third since A is a

t/L-module algebra. The fifth equality is clear. For the fourth equality we must

show l-nf=(n~1f)*(l-f). Say this is true for n-1. It is clear /■n/(l) = ("_1/) *

i¡ /)(!)=0. Since UM is spanned by elements of the form 1 and ur, u e UM, reM

it suffices to show /"/(«r) = "-y* Q-f)iur) or that r --(/•"/) «r-» ("" y * (/■/)).

We have

!—(/•/) = /(r—f) = /-("-1/* (r-/)) = (/•"-y)*(r-/) + "-y*(/-(r-/))

= ry)*(/-/)*(/—/)+n-y*(>— (/•/)) = r-ry* (/•/».

(1 ® r) - "(0(7 ®/)) = "-W ®/)) * [(1 ® r) - 0(7 ®/)]

= [0(7 ® "-1/)] * [0(7 ® r -/)] = 0(7® ("~y*(r-/)))

= 0(7 ® ir - "/)) = (1 ® r) - (0(7 ® "/)).

Here, all the equalities are clear.

The last fact we need to verify before showing that exp gives an isomorphism of

complexes in positive degree is that:

(9)     (exp/)(M ® 1 ® V) = pieiu)eiv)),     log if + pie ® e ® e))(u ® 1 ® v) = 0,

for fe Horn (UL ® UM ® UN, A) where f(u ® 1 ® v) = 0, u e UL, v e UN. It

suffices to show nf(u ® 1 ® t>)=0 for positive n. Assume by induction the result

is true for 0<n— 1. UN is spanned by 1 and elements of the form vr where re N,

nf(u ® 1 ® vr) = [(1 ® 1 ® r) -- nf](u ® 1 ® v)

= "_y* ((1 ® 1 ® r) -^f)(u ® 1 ® v)

which is equal to zero by the induction and the fact A(l)= 1 ® 1. We must consider

n/(w ® 1 ® 1). UL is spanned by 1 and elements of the form ul where leL.

"/(«/ ® 1 ® 1) - [(/ ® 1 ® 1) -^ "/](" ® 1 ® 1)

= "-1/* ((/ ® 1 ® 1) --/)(« ® 1 ® 1)

which is equal to zero by the induction and the fact A(l)=l ® 1. Finally,

n/(l ® 1 ® 1)=0 by definition of nf.

We have exp: Cn ->■ Reg" (C/L, A) is a group homomorphism and by (9) exp: CB

-»■ Reg" iUL, A) is a group isomorphism with inverse log. That exp is a mor-
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phism of complexes (in positive degree) follows from the form of the differential

in the two complexes and (5), (6) and (7). By [6, p. 282, §8] the Hochschild co-

homology is equivalent to the Lie cohomology.   Q.E.D.

Proposition 4.4. Suppose p>0 and A-H°(L, A+)+I where I is an ideal in A

which is a UL submodule and0 = 1-1.1(p times); then HX(UL, A)^HX(L,A+)

and the isomorphism is induced by the isomorphism of complexes (in positive degree)

given in Theorem 4.3.

Proof. Suppose/G Cx then for n<p nf=fnln\. This follows from the uniqueness

property (0) in the proof of Theorem 4.3. We must now prove that if /is of the form

f(u) = ua-e(u)a for u e UL, ae I then n/=0 for n^p. Suppose {/¡}cHom (UL, A)

and each/ is of the form f(u) = uah a¡ el. We shall show that nf*fx*--*fm = 0

if n+m^p. We consider nf*fx*--*fm(lx---lr) and proceed by induction on

n + r. If « + r=0 then nf*fx*-- -*fm(i) = ax- ■ am and m^p. By the/>nilpotence of

/ this is zero. Suppose the result has been proved for values less than n + r. Then

"/*/ *• -»/„(/i- •    If)  =   Ur- C/*/ *• ■    */m)](/l- • -/,-l)

= n-Xf*(lr --/)*/l *••■*/«(/! ••■/,-!)

+ ¿"/•¿••••*ft-\fl> •••••/. (k-lr-l).

As a function (lT —*f) has the form (/r -*f)(u) = u(lra) and (/r —*/) has the form

(lr -*fi)(u) = u(lra¡). Since / is a UL submodule, lra, lrax,..., lram e land the above

equation is zero by the induction.

As a consequence of n/=0 for n^p it follows that exp/=2o~1/VI"

If g denotes the function UL-*- A,u->u-a and A denotes the function UL -»■ A,

u^* -e(u)a then f=g+h. Also, since ae/we have 0=gp=Ap; and thus, exp/

= (exp g)(exp A) where exp g is defined to be 2o_1 g'/'! and exp A is defined to be

2o_1 A'//!. Since ae I we have exp a = 2o_1 a'/il e Ar and it follows that exp 8°(a)

= D°+ (exp a). Since A = H°(L, A+) +1 any 1 -coboundary in Cx is of the form 8°(a)

for ae I. Thus exp carries the 1-coboundaries of Cx into the 1-coboundaries of

Regi (UL, A).

Suppose D°+(c) is a 1-coboundary in Reg\(UL, A) where c e AT. By hypothesis

c = b + x where b e H°(L, A+), x e I. Since c" = bv + xp = b" it follows that b is

invertible and letting z=i+b_1x we have c = bz, so that z is invertible.

£>°+ (c)(/i •••/„) = [(/, •••/,)• (bz)]/bz = [(/, ■••/„). z]/z = /)°+ (z)(/x •••/„). Since L gen-

erates UL it follows that D°+(c) = D°+(z). Since z-l=A-1;cG/we have a=logz

= 2ï_1 (— i)i~x(b~xx)'li is defined, ae I and exp a=z. In the preceding paragraph

we have shown exp 8°(a) = D°+(exp a) = D°+(z). Thus exp carries the 1-coboundaries

of Cx surjectively onto the 1-coboundaries of Reg+ (UL, A). Since exp is an iso-

morphism of complexes in positive degree it carries the 1-cocycles of Cx isomor-

phically onto the 1-cocycles of Reg!¡. (UL, A).    Q.E.D.
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Example 4.1. Suppose L is a Lie algebra and V an L-module ; hence, a UL-

module. As in Example 3.2 we consider V to have trivial multiplication and let

A = k ® V, V with a unit adjoined. A has a t/L-module algebra structure where we

define f.(A, »)-(«(/)A, <•") for teUL,Xek,veV, H%UL, A)^ALr which is

isomorphic to the direct product of the groups k" and the additive group VL.

Since F is a 2-nilpotent ideal (VV=0) and k+V=A it follows from Propositions

4.2 and 4.4 that H\UL, A)^H\L,A+). For q^2 it follows from Theorem 4.3

that H"iUL, A)=HQiL, A+). We shall show in §6 that 77«(L, V) can be recovered

from H"iUL, A) as a relative cohomology group. It will be a direct summand

of H\UL, A).

5. Comparison with Amitsur cohomology. For a commutative algebra A we let

(g« AT denote ((g)« A)7. For i=0,..., q there is the algebra morphism e¡: (g)« A

->-0«+1 A, ax ®- • • ® aq^-ax ®- • • ® a, ® 1 ® ai + x ®- • • ® aq. There is the

differential 7^:®« ,4r->-(g)« + 1/T, x->e0ix)exix)-1- ■ -e^x)*1. The Amitsur

complex of A is the complex {(g)«+1 A7, 7f,},ao and the ^th homology group

KerEJlmEq-x is denoted 77«(^), [19, p. 327]. Note, that the qth group in the

Amitsur complex is (g«+ ' A7.

Let 77 be a cocommutative Hopf algebra and A be a commutative 77-module

algebra. We have a map M: (g)«+1 A ->- Horn ((g)« 77, A). This is given by

Miax ®- • • ® aq-x)(hx ®- ■ • ® A,) = axhx-(a2h2-(- ■ -aq.xhq.x-(aqhqaq+x)- ■ ■)).

M is an algebra morphism—because A is an 77-module algebra—and induces a

morphism of complexes M7: {<g«+1 A7, £„}-v {Reg« (77, A), 7)«}. We present a

verification for the case q = 1 which contains all of the aspects of the most general

case.

M(ax ® a2) * M(bx ® èaX«) = 2 (aiha)-a2)(bxh(2)-b2)
(»)

= 2aiei(fl<i>"a2X«(2)-¿>2) = axbxh(a2b2)
m

= MfaA ® a2b2)(h).

M(\ ® IX«) = In-1 = e(A)-1 = pe(h).

Thus A7 is an algebra homomorphism.

0(7 ® A7(a! ® a2))(A1 ® h2) = hx(axh2a2)

= M(l ® ax ® a2)(hx ® na) = M(e0(ai ® fl2))(«i ® h2).

M(ax ® a2)m(hx ® n2) = axhxh2a2 = a^ilna-aa)

= A/(a! ® 1 ® a2)(hx ® h2) = Míe^Oj ® a¿))(Ai ® h2).

(M(ax ® a2) ® e)(hx ® na) = axhxa2e(h2) = a^! • (a2Aa • 1)

= A/(a! ® a2 ® l)(ni ® Aa) = A/^ia! ® a2))(A! ® Aa).
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Thus Mr=M | (g)« A7 is a morphism of complexes. This leads to a natural map

Í2: 77"(A) -*■ 77«(77, A) for q^O. In the setting of Example 3.1 this gives a map of

the Amitsur cohomology of the field extension A to the Galois cohomology.

Theorem 5.1. If A is afield and H°(H, A)=k7—equivalently, AH = k—then the

morphism of complexes M7: {(g)«+1 A7, Eq) ->-{Reg« (77, A), D"} is injective. If in

addition A is a finite extension ofk and [,4 : A] = dim^ 77 then M7 is an isomorphism

of complexes; thus, £î: H "(A) -* 77 «(77, A) is an isomorphism.

Proof. For clarity we denote the map M: (g«+1 A -> Horn ((g« 77, A) by Mq. To

prove the first statement it suffices to show all Mq are injective for ^^0. For 17=0

M0(a)(X) = Xa for A e k, a e A. Thus Af0 is injective.

We next prove Mx is injective and then "go up" by induction. Suppose Mx is not

injective. Let ax ® bx + • • • + an ® bn be a nonzero element in Ker Mx where n is

minimal. Suppose n > 1. Since Mx is an algebra morphism it follows (ax ® bx

H-l-aB ® ¿>n)(l ® bñ*) £ Ker Mx. (By minimality of n, bn^0.) Thus we can

assume bn = 1. By minimality of n not all A¡ lie in A so we can assume bx $ k. Thus

there is he H where h-bx^e(h)bx. Since A- l = e(A)l it follows that,

0 ¥= ax ® A-ö!+ • • • +a„ ® hbn-(ax ® e(A)6!+ ■ ■ • +an ® e(h)bn)

= ax ®[h-e(h)]-bx+---+an.x ® [h-e(h)]bn.x.

This is a nonzero element of shorter length and for any g £ 77,

M1Çf at ® [h-e(h)]-b^(g) = ^aMh-em-bi) ^2a^[h-<h)]-bi)

= Mx(2ai®bi)g[h-e(h)) = 0.

This contradiction implies n= 1. But if ax ® bx e Ker Mx then ax ® 1 e Ker Mi.

and Mx(ax ® 1) is not zero on the unit of 77. Thus Mx is injective.

Suppose we have shown Mq-X is injective where q — lji 1. Let O^x £(g«+1.4,

we can write x=2 °i ® *i where {a,} is a linearly independent set of elements of A

and {x,}<=(g« /4. Since x is nonzero some xt is nonzero, say xx. Note that for

Ai,..., A, £ 77,

Mq(x)(hx ® •• • ® A,) = 2 Mi • [A/, - iC*i)(A2 ® • • • ® A,)]

= A/^2 a> ® [A/^i^XAa ®- • • ® A,)]^^).

By the induction there exist A2,..., hq e 77 so that Mq-X(xx)(h2 ® • • • ® A„)^0

and 2 fli ® [A/g-i(X()(A2 ® •• • ® A,)] is a nonzero element of A ® A. Again by the

induction there is hx e 77 where A/^*)^ ® • • • ® A,)/0. This gives the injectivity.
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Suppose [A:k] = dimk H=n<oo. Then both (gy+1 A and Horn ((g)5 H, A) have

A-dimension nQ + 1. Mq being injective implies it is an isomorphism. This gives the

last statement.   Q.E.D.

If A is a Galois extension of k and H=kG the group algebra of the Galois group,

then all the hypotheses of Theorem 5.1 are satisfied and this shows the Amitsur

cohomology agrees with the Hopf algebra cohomology (agrees with the Galois

cohomology).

The next lemma allows us to apply Theorem 5.1 to a large collection of fields.

Suppose Hx and H2 are cocommutative Hopf algebras and A¡ are commutative

algebras which are //¡-module algebras for /= 1, 2. Then Ax ® A2 is an Hx ® H2-

module algebra where (hx ® A2) • (ax ® a2) is defined to be (hx ax ® A2 • a2).

Lemma 5.2. (Ax ®A2y®H» = Ax ® AS» and(Ax ® A2)"^H»=A^ ® AS».

Proof. Let /„: A2-> A2, a-> [A — e(A)]• a for all heH2. Then A2* =

CW» Ker fh2 and (Ax ® A2)k®"* = 0*^ Ker (/ ® fh) = f)heH2 Ax ® (Ker/,)

—Ax ® A2z. This is the first result.

Similarly (Ax ® A2)H^k = Ax^ ® A2. The second result follows from

A«i ® A%2<=(AX ® A2)Hi®H2<=(Ax ® A2)H^k r\ (Ax ® A2)k®A* = Afi ® ¿?».

Q.E.D.
Example 5.1. Suppose A is a purely inseparable field extension of k and /Í

=k[x] where xp" g A: and x""'1 i k. We define a commutative cocommutative Hopf

algebra H with basis Z)0,..., /V-1- Multiplication is given by

/),/>, = Ç+f) Dl+I

so that D0 is the unit. The coalgebra structure is given by e(D¡)= 1 if /=0 and 0

otherwise and A(Z)() = 2'=o D¡ <g> Dt^f. A is an //-module algebra where Dt(x') is

defined as Q,f x>-<; then ^H = A, [14, p. 195]. Also, [/4 :k] =pn = dimfc H so that by

Theorem 5.1 H"(H, A) = H"(A) for all q.

Example 5.2. Suppose A is a finite normal and modular extension of k,

[23, §2, Definition above Corollary 8]. Then as an algebra A ̂ Ax ® A2 ® • • • ® An

where Ax is a Galois extension of A: and each At is an extension of. A of the form in

Example 5.2 for i=2,..., n, [23, §2, Remark after Corollary 8]. Let Hx be the

Galois group algebra Hopf algebra and H¡ a Hopf algebra associated as in Example

5.2, with each Ai for i=2,..., n. Then if H=HX ®- • • ® //„ A is naturally an

//-module algebra and by Lemma 5.2 it follows A" = k. Also, [/l:A]=dimfc H so

that by Theorem 5.1 the Amitsur cohomology of A is the same as the cohomology

H«(H, A).

6. Relative cohomology. Suppose A and B are commutative algebras which

are //-module algebras and/: A -*■ B is a morphism of H-module algebras; i.e., an

algebra morphism and //-module morphism. The map f: Reg1 (H, A)

-> Reg" (H, B), g -+fg is a group homomorphism since / is an algebra morphism
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and is a morphism of complexes since /is an 77-module morphism. This gives rise

to two simplicial complexes Ker/r a subcomplex of {Reg« (77, A), D7} and Coker/r

a quotient complex of {Reg« (77, B), D7}. Taking homology we have natural maps

77«(Ker/r) -> 77 «(77, A) and 77«(77, 77) -> 77«(Coker/T).

Definition. When/is injective—so that A may be considered an 77 submodule

algebra of B—the group 77«(Coker/r) will be denoted 77«(77, A <-► B). When/is

surjective--so that 77 may be considered an 77 quotient module algebra of A—the

group 77«(Ker/) will be denoted 77«(77, A -+> B).

Suppose/is injective, Reg is a left exact functor so there is an exact sequence of

complexes :

fr
(*) 0 -> {Reg« (77, A), D7} —^ {Reg« (77, B), D7} -> Coker/r -* 0.

This gives rise to the long exact cohomology sequence:

0 -* H°(H, A) -> H°(H, B) -> 77°(77, A «^ B) -> 77X77, A)-►• • •

-> 77"(77, B) -+ 77"(77, A <-+ B) -> 77" + 1(77, A) -> 77"+1(77, B) ->• • •.

In addition suppose there is an 77-module algebra morphism g: B-+ A such that

gf=IA- In other words B=f(A) © Kerg. Then the exact sequence (*) splits, the

splitting induced by g7. The morphisms/and g give rise to the relative cohomology

groups Hq(H, A<-+ B), 77«(77, B-»A) respectively. The splitting implies these

groups are naturally isomorphic and for all q,

77«(77, B) m 77«(77, A) © 77«(77, A <-+ B).

In the notation of Example 3.2 and for q^O we have the commutative diagram,

0 —► 77«(AG, A) —> 77«(AG, A)

Y V

0 —> H"(G, k7) —> H"(G, A7),

where the vertical maps are isomorphisms and the horizontal sequences exact.

77 «(G, A7) is naturally isomorphic to a direct sum of (the image of) 77 «(G, Ar) and

H"(G,V). Thus 77«(G, V) is naturally isomorphic to H"(kG, k <-> A) and

77 «(AG, A -» A).

Similar reasoning applied to Example 4.1 shows that H"(L, V) is naturally

isomorphic to H\UL, k^-A) and 77"(UL, A-^-k)forq^ 1.

Next we consider the situation /: A -> B is surjective. Since Reg« (H, *) is not

generally right exact, we have no long exact sequence but only the natural mor-

phism 77 «(77, A -+> B) -+ 77 «(77, A), for all q. We discuss two situations where

exact sequences arise.

Lemma 6.1. Iff: A -> Bisa surjective algebra morphism whose kernel consists of

nilpotent elements, then f7: Reg« (77, A) -*■ Reg« (77, B) is surjective for all q.
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Proof. It suffices to prove that/': Reg1 (H, A) -> Reg1 (H, B) is surjective since

Reg" (H, *) = Reg1 ((g)'H, *) for q = 0. Let we Reg1 (H, B). We can find u,ve

Horn (H, A) satisfying fu=w and fv = w~x. We shall show that u e Reg1 (H, A)

and be done.

f(u * v)=(fu) * (fv) = w * w~x=p.Be, the unit. Thus u*v=p.Ae—x for some

x e Horn (H, A) where/c=0 and hence Im x<= Kerf. To prove u is invertible it

suffices to show that pAe-x is invertible. Let heH, by [16, Proposition 2.5] there

is a finite dimensional coalgebra C<=// where A g C. The space x(C) is a finite

dimensional subspace of Ker/ so that there is large N where x(C)N = x(C) • ■ •

*(C)=0. Then for m^N, xm(h) = 2m x(ha))- ■ -x(h(m}) e x(C)n=0. This shows that

pAe+x+x2+x3+ ■ ■ ■ is a well defined element of Horn (//, A) and this element is

the inverse—with respect to convolution—of p,Ae-x.   Q.E.D.

As a result of Lemma 6.1 if / satisfies the hypothesis, there is a short exact

sequence of complexes,

0 _ Ker/' -+ {Reg« (//, A), D'} -* {Reg« (H, B), D>} -+ 0,

which gives rise to the long exact sequence,

0 -> H°(H, A-»B)-* H°(H, A) -> H°(H, B) -* HX(H, A^*B)-+--

-* Hn(H, A) -> Hn(H, B) -* Hn + X(H, A-*+B)-+ Hn+X(H, A)-*--.

We now consider another situation leading to a long exact sequence. This time

we put a restriction on H.

Definition. A cocommutative coalgebra is called connected if it has a unique

minimal nonzero subcoalgebra, which is 1-dimensional. A Hopf algebra is called

connected if the underlying coalgebra is connected. In this case Al is the unique

minimal subcoalgebra.

Such Hopf algebras are studied in [22]. The universal enveloping algebra of a Lie

algebra and the restricted universal enveloping algebra of a restricted Lie algebra

are connected Hopf algebras. The tensor product of connected Hopf algebras is

again connected. This follows from the coalgebra considerations in [10, §3].

Lemma 6.2, If H is a connected Hopf algebra then the functor Reg"+(H, *) is right

exact for q¡£\.

Proof. Suppose/: B -*■ B is a surjective algebra morphism and g e Reg«+(/Y, B).

If/= Ker/we can find a linear complement Kto /where 1 g V. Thus B=I® Kand

f\V: V-*B is a linear isomorphism where (/|K)(1)=1. Let r¡:B^- V be the

inverse linear isomorphism and let e be the composite B jl> V-+A. Then g=

eg e Horn ((g)« H, B), ß=g and g(hx ®-■ ■®hq)=p.èe(hx-■ hq) if any A(gA.

Thus we are done when we show that g is invertible in Horn ((g" H, B). This follows

from the next lemma, since the tensor product of connected Hopf algebras is

connected.
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Lemma 6.3. Let C be a connected coalgebra with C0 being the unique minimal

l-dimensional subcoalgebra. Let D be an arbitrary algebra—not necessarily com-

mutative. If he Horn (C, D) and A carries the nonzero elements of C0 into D7 then

h is invertible; i.e., A £ Reg (C, D).

Proof. The following proof is a generalization to ungraded coalgebras of

[18, p. 259, Proposition 8.2]. By [22, §1], C has a filtration by subcoalgebras

Co^CjC ■ • • where C=\J Ct and A(Cn)<=23 Q ® Cn_(. C0 contains a unique

element g where e(g) = 1 and A(g)=g ® g. One can deduce that if x e Cn and n > 0

then

(1) A(x) = g ®x + x ®g+Y,   where Fe Cn_! ®Cn_j.

We define the left inverse to A by induction on the filtration. Define A_1(g)

= (A(g))_1- Suppose A-1 has been defined on Cn.x for n-1^0, let xeCn. We

diagonalize x as in (1) and define h'1(x) to be

(2) [e(x) - A - Hg)A(x) - mD(h - * ® A)( Y)](h(g)) - \

Then we automatically have A"1 * h(x) = e(x). Thus A-1 is defined on Cn and by

induction we have A-1 defined on C, a left inverse to h. Similarly A has a right

inverse; thus, the two inverses are equal and A is invertible.   Q.E.D.

We shall use this lemma again in later sections.

If /: A -► 77 is surjective then the morphism of complexes fl : Reg«+ (77, A)

-> Reg«+ (77, 77) is surjective in positive degree. The kernel is denoted Ker/i and

the homology of Ker/i is denoted H\(H, A -» B). By Lemma 6.2 we have the

short exact sequence of complexes in positive degree

0 -> Ker/; -* {Reg«+ (77, A), D7+}qZx -> {Reg«+ (77, B), 7T+},âl -> 0,

which as usual gives rise to a long exact sequence,

0->Zi(77, A ->*77) ̂ Z\(H, A)^-Z\(H, B)-► 77?(77, A -^>B)

-+ H2(H, A) -> 772(77, B) -> 77?(77, A ̂ > B) -> 773(77, A) ̂ - ■ ■

-* 77"(77, B) -+ 77".+ 1(77, A -» B) -> 77" + 1(77, A) -> 77" + 1(77, *)-»••• -,

where Zj: is the group of cocycles in the indicated complex.

Proposition 6.4. The natural map of complexes Ker/| -> Ker/r induces an

injective morphism i : 77« (77, A-+* 5) -► 77 «(77, A -+> B)for all q.

Proof. For q=0 i is actually an isomorphism since Reg0 (77, *) = Reg° (77, *);

this also implies t is injective when q= 1.

Suppose q^2. There is a natural inclusion map from Z\(H, A)^-Z\H, A)

which we wish to show is surjective. Say g e ZX(H, A) then D1(g)=p(e ® ¿) which
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implies l = Dl(g)(l ® l) = (lg(l))g-1(l)g(l)=g(l)- Thus geZ\(H,A). ïmf is a

subcomplex of {Reg« (H, B), DT}. From the commutative diagram with exact rows,

{Reg« (//, B), D'}

Î
Im/r-> 0

Î
{Reg«+ (//, B), D\} -^ 0,

we have induced a long commutative diagram with exact rows and the vertical

composites identity maps,

Z\H, A) -+ Zx(lmf) -+ H\H, A-++B)-* H2(H, A)-*--

ft t t
Z\(H, A) -> ZX(H, B) -+ H2 (H, A-++B)-+ H\H, A) -> •

//"(//, B)

t
-> Hn(H, A) -> Hn(lmfr) -> Hn+1(H, A

ft t
-*Hn{H, A) -> //"(//, B) -* Hl+ X(H, A

By the 5 Lemma, [6, p. 5, Proposition 1.1], it follows that H$(H, A^>* /?)->

H"(H, A -^*- B) is injective for q ̂  2.    Q.E.D.

7. Extensions. Let M be a vector space and C a coalgebra. We say ip: M

-» Af ® C gives M the structure of a right C-comodule if (/ ® e)>p=I and (/ ® A)</r

= (<P ® Z)^- For example if C is a coalgebra then A : C ->■ C ® C gives C the struc-

ture of a right C-comodule. In keeping with our previous notation for all m e M

we denote if>(m) by 2<m> ™m ® nta) eM ® C. We denote (/ ® A)<p(m) by 2<m) w(0)

® m(X) ® «7(2) g Af ® C ® C, etc. We use the same convention as in §1 regarding

«-linear maps. Thus for example 2<m) mmE(mm) =m and if C is cocommutative

2<m) »1(0) ® »»(1) ® >"(2) = 2(m) W<0) ® »1(2) ® »%)•

Let A be a commutative algebra, 5 an arbitrary algebra which contains A, and H

a cocommutative Hopf algebra for which A is an //-module algebra.

Definition. We say that an algebra homomorphism tp:B^*B®H is an

extension of A by H if:

(1) A = if,-X(B® l)={beB\t(b) = b® 1},

(2) ^ gives B the structure of a right //-comodule (with respect to the under-

lying coalgebra structure of H),

(3) ba=2(6) (A(i)-fl)A(0) for all A g B, a e A.

Example 7.1. Let G3 be a group. Let Gx be an abelian group which is a G3-

module and on which G3 operates as automorphisms. An extension of Gx by G3

0 —> Kerf —► {Reg« (H, A), Dr}

î î
0 —* Kerf I —> {Reg«+ (H, A), D\}

B)^Hn+x(H,A)

t
B)^Hn+x(H,A)
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is an exact sequence of group morphisms :

g /
1 —► Gi —► G2 —> G3 —> 1,

where g(x • a) = wg(a)w "1, for a e Gx, w e G2, x =f(w) e G3, [6, p. 299]. By means

of g we consider Gx as a subgroup of G2, and we consider A=kGx as a subalgebra

of B=kG2. Let 77=AG3. Since G3 acts as automorphisms of Gx, A has induced an

77-module algebra structure which extends the given action of G3 on Gx. The map/

induces a Hopf algebra morphism A/: 77 -> 77, Aw -> Xf(w), for w e G2, Xek. Let

0: B -+ B ® 77 be the composite B ¿> B ® B im< > B ® 77. It is easily shown

that (0, 77) is an extension of A by 77.

Example 7.2. Let L3 be a Lie algebra. Let Li be an abelian Lie algebra which

is an L3-module and on which 7_3 operates as derivations. An extension of Lx by L3

is an exact sequence of Lie algebra morphisms :

g f
0 —-> Lx -^ L2 ^U L3 —> 0,

where

(*) g(xa) = [w,g(a)]

for a e Lx, w e L2, x =f(w) e L3, [6, p. 304]. By means of g we consider Lx as a sub

Lie algebra of 72, and we consider A = ULX as a subalgebra of B= UL2. Let 77= UL3.

Since L3 acts as derivations of Lx, A has induced an 77-module algebra structure

which extends the given action of L3 on Lx. The map / induces a Hopf algebra

morphism Uf:B->H, induced by w -+f(w) for w e L2. Let 0: B ->• B ® 77 be the

composite B±>B ® B /<8 ̂ > B ® 77. Clearly 0 is an algebra morphism which

gives B the structure of a right 77-comodule. By (*), (3) is satisfied for elements in

the Lie algebras. By induction one shows that (3) is satisfied for monomials of

elements in the Lie algebras. Since Lie algebras generate their universal enveloping

algebras, (3) is satisfied. A^^~\B ® 1), and by an application of the Birkhoff-Witt

theorem one can prove that A=<p~1(B ® 1). Thus (0, B) is an extension of A by 77.

Example 7.3 The smash product. Let A be an 77-module algebra. We define

the algebra A# 77 to be A ® 77 as a vector space. (We write a # A for a ® A when

thought of as an element of A # 77, a e A, h e 77.) Multiplication is defined by

setting

ia # g)ib # A) = 2 ß(i?(i) • b) # g(2)A,   for a,beA,g,heH.
(»)

One easily checks A # 77 is an associative algebra with unit 1 # 1 and subalgebra

A§k^A. (Here and in following sections the notation 2(9> g(n <8> g«) is especially

good because it makes formulas look like known formulas for groups. Thus

multiplication in A # 77 looks like multiplication in the semidirect product of

groups. A proof that multiplication is associative in the semidirect product of
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groups could be changed into a proof that multiplication is associative in A # H

simply by adding the summation signs and parenthesized subscripts.) A # H is

called the smash product of A by //.

Let B=A # H, identify A with A # A and let >l>: B -+ B ® H, a#h^-

2(n) fl # A(d ® A(2) (^=/ # A). Then one can easily check that (0, /?) is an extension of

A by H.

Definition. Let (iph B¡) be extensions of A by H for /= 1, 2 and let F: /Jj -> B2.

T is called a morphism of extensions if:

(1) T(A)<^A and T\A considered as a map from A to A is the identity map.

(2) T is an algebra morphism.

(3) F is a morphism of //-comodules ; i.e., (T ® /)^i = ^2F, which is equivalent

to ^2F(A) = 2(i,) T(bm) ® A(1) for all be Bx. A bijective morphism of extensions is

called an isomorphism of extensions. Of course the inverse map is a morphism of

extensions.

In Example 7.1 (7.2) a morphism of group (Lie-algebra) extensions gives rise

to an isomorphism of the associated algebra-by-Hopf algebra extensions.

We now describe the "product" of extensions. Let (^¡, Bt) be extensions of A

by H for /= 1, 2. Since (/ ® 02): Bx ® 52 -> Bx ® B2 ® H and (/ ® t)(>px ® /):

Bx ® B2-+ Bx ® B2 ® // are both algebra morphisms Â>Ker ((/ ® t)(<px ® /)

-(/ ® W) is a subalgebra of 5j ® B2. One easily shows (/ ® <//2)(K)<^K ® /7 by

showing ([(/ ® *)(& ® /)-(/ ® <f>2)] ® /)(/ ® M^)=0. Thus / ® ip2 (or (/ ® t)

■ (<px ® /)) induces an //-comodule structure on K. Note A ® A and A ® /Í are

subalgebras of A', let K be the subspace of K, {a ® 1 — 1 ® a | ae A}. Then

(/ ® ^2)(F)"= V ® H. Since (/ ® tp2) is an algebra homomorphism, if J is the

2-sided ideal in K generated by K then (/ ® ^-^(J^J ® H. Thus 7 is a sub-

comodule of K and (/ ® <p2) induces an //-comodule structure t/i3 : K/J -> (KfJ) ® H.

We let B3 denote K/J. Since J is an ideal, /?3 is an algebra and <fi3 is an algebra

morphism. Thus (<f>3, B3) satisfies (2) in the definition of extension.

We now assume there exist maps P: Bx^* A and y: //->■ Bx such that

(1) Bx^A®H,b^2 p(bm) ® A(1)
(6)

(2) A® H-*Bx,a®h-*ay(h)

are inverse linear isomorphisms. One can deduce that y is a morphism of right

//-comodules, F is a morphism of left ^-modules, P\A = IA and Py=p.AE. Such P

and y always exist for the "cleft" extensions discussed later. In fact the existence

of a suitable y implies the existence of P. We shall show that under these additional

assumptions (tfi3, B3) is an extension.

If Bx ® B2 and A ® B2 have the //-comodule structure induced by (/ ® ip2)

then P ® /: Bx ® B2 -* A ® B2 is a morphism of right //-comodules and

(P ® /) I K: K -*■ A ® B2 is a morphism of right Zf-comodules. Bx ® B2 has a

natural left A ® yi-module structure (left-multiplication in each factor) under
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which K and A ® 772 are submodules. Observe (7* ® 7)|A is a morphism of left

A ® A -modules. Let M=Ker (/I QAH^A); as an ideal M is generated by

{a ® 1 - 1 ® a | a e A).

By (4) in the definition of an extension it follows that J, the 2-sided ideal gen-

erated by V, is equal to the right ideal generated by V and thus J=MK. We have

(P ® 7)|A: induces P: K/J-+ÍA ® B2)¡M(A ® B2)^B2, or P: B3 -> B2 and is a

morphism of right 77-comodules. There is a natural map i : ^ -► 7?3, a -> the coset

of (1 ® a), (or (a ® 1)). Since P j^4 = Z^ it follows that Pi=IA and t is an injective

algebra morphism. We identify A with its image under t. Then P is also a morphism

of left ^-modules.

The image of the map Q: B2^> Bx ® 2?2, A -► 2<» y(Ai)) ® A«» lies in K because

y is a comodule morphism. Thus Q the composite 772.£> K-+ K/J=B3 is a mor-

phism of right 77-comodules (and left vi-modules). Using Py=pAe one easily

verifies PQ = IB2 and using the fact the linear isomorphisms (1) and (2) are inverse

one can verify with some calculation that QP=IB3. This implies A={be B3\ 03(6)

= b ® 1} and (03, B3) satisfies (1) in the definition of extension.

Let Bx ® 772 have the comodule structure induced by (7 ® 02). Then for x e Bx

® 772 and aeA, x(\ ® a) = '£(x) (xa)- a)xm since B2 is an extension and satisfies

(4). This implies (03, B3) satisfies (3) in the definition of extension ; thus is an

extension of A by 77.

We remark that if T: B2 ->- 772 is a morphism of extensions T induces a morphism

of extensions from the product of Bx with B2 to the product of Bx with B2. If

suitable P and y exist for B2 instead of Bx a similar argument shows that the product

of Bx and B2 is an extension. The product of Bx and B2 is naturally isomorphic

as an extension to the product of 772 and Bx.

8. Crossed products, cleft extensions, equivalence classes and H2(H, A). We

now introduce crossed products. Suppose a: 77 ® 77-> A where A is a commutative

77-module algebra. Recall in A # 77 the multiplication is given by (a # g)(b # A)

2(9) a(gayb) #g(2)A. We alter this multiplication by o which will usually be a

2-cocycle in Reg+: (77, A).

Definition. A #„ 77 is the vector space A ® 77 with multiplication defined by

setting

(a#,g)(b#„h) = 2  a(gayb)o(g(2) ® ha)) #„g(3)A(2).

Note that when a=pA(e ® e) then A§„His precisely A # 77.

Lemma 8.1. (a) The multiplication in A§aH is associative if and only if

[0(7 ® a)] * [a(I ® m)] = [o(m ® 7)] * [a ® 4

(b) 1 #„1 is the unit in A#„H if and only if o(g ® A)=/tijle(gA) whenever g

or A lie in A.
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Proof, (a) Suppose A §aH is associative, let/ g, heH. Then ((1 #ff/)(l #„g))

•(1 #„A) = (1 #ff/)((l #ffg)(l #„A)). The left hand side equals,

(   2     <*/") ®*U>) #•/<**<»)( W)
\ (/).(») /

(*) =       2       CT(/<D ® £u>(/¡2)g(2) ® A(1)) #a/(3)g(3)A(2)
(/).«>.(ft)

= 2 t"C/(l)   ®f(l)MA(1))][CT(/"(2,g(2)  ® A(2))]#ff/(3)g(3)A(3).
</).<»).(»)

Similarly the right hand side equals,

(**) 2     [fa)-o(ga) ® A(1))][a(/(2) ® g(2)A(2))] #ff/(3)g(3,A(3).
(/),«).(*)

Applying / ® £ (or I§„ e) to (*) and (**) and equating shows a satisfies the identity

in (a). Similar calculations which we leave to the reader show that if o satisfies the

identity in (a) then A#aHis associative,

(b) Suppose 1 #„ 1 is the identity of A #„ H and heH. Then

1 #, A = (1 #, 1X1 #, A) = 2 "0 ® *(») #.*(»•
c»)

Applying /#„£ shows p,Ae(h) = o(i ® h). Similarly a(h ® i)=p.Ae(h). Conversely,

if a satisfies the identity in (b) then one easily verifies that 1 #„ 1 is the identity of

A#.H.   Q.E.D.

<l>a:A#aH^A#aH®H, a#ah^Zma#ah(X) ® A(2) gives A$9H the

structure of a right //-comodule and is a morphism of multiplicative systems. We

identify A with A#ak<=A#,,H. The map (/#„£ ® I)<p„: A#„H-*A®H,

a#„h-+a ®h can be used to show that A={be A #„H \ 4>„(b)=b ® 1}. If a

satisfies the conditions of Lemma 8.1 then Ajf„H satisfies conditions (1) and (2)

in the definition of an extension. One easily verifies condition (3). Thus (<fia, A #ff//)

is an extension of A by //. Whenever we consider (ipa, A #<,//) as an extension of

A by H we always mean it has the structure just presented. Thus the copy of A in

A$aH—as an extension—is always A§„k. We call A§„H a crossed product

(extension) when a satisfies the conditions of Lemma 8.1.

Definition. A map S g End H is called an antipode for H if S is the 2-sided

inverse to / g End H with respect to convolution (*).

S is necessarily unique being defined as an inverse. When such S exists H is called

a Hopf algebra with antipode. H being a Hopf algebra with antipode is equivalent

to / g Reg (H,H).

Example 8.1. Suppose G is a group. Then S: kG^-kG, g^-g'1 is an anti-

pode.

Example 8.2. Suppose A'is a connected Hopf algebra, (see §6). By Lemma 6.3

/ g Reg (K, K) so that Kis a Hopf algebra with antipode. Since (restricted) universal

enveloping algebras of (restricted) Lie algebras are connected they have antipodes.
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In this case the antipode applied to an element of the (restricted) Lie algebra is

negative-the-element.

For general Hopf algebras an antipode is an algebra antimorphism, a coalgebra

antimorphism and has period 2 if the Hopf algebra is commutative or cocommuta-

tive, [10, §1, Lemma 1].

Definition. An extension (0, B) of A by H is called cleft if there is a comodule

morphism in Reg (77, B) and 77 has an antipode.

Example 8.3. 77 is a right 77-comodule and contains a copy of A and may be

viewed as an extension of A by 77. 7: 77-> 77 is a comodule morphism which is

invertible if 77 has an antipode. In this case 77 is a cleft extension of A by 77.

Lemma 8.2. Suppose 77 has an antipode S, A is an H-module algebra and (0¡, Bt)

are extensions of A by H,for i= 1, 2.

(a) If T: Bx-> B2 is a morphism of extensions and (01; Bx) is cleft then so is

(02, B2).

(b) If ye Reg (77, Bx) is a comodule morphism then 0iy-1=(y_1 ® S) A.

(c) If (0„, A #„ 77) is a crossed product extension then the comodule morphism

y„:H-> A§aH,h-+\§ahis invertible if a e Reg2 (77, A). The inverse is given by

A -* 2(Ä, r" Wœ) ® A(2)) #ff S(A<3)).

(d) S is a coalgebra morphism.

Proof, (a) If y £ Reg (77, Bx) is a comodule morphism then Ty e Reg (77, B2)—

has inverse Ty'1—and is a comodule morphism. Thus (02, 772) is cleft.

(b) Since y is a comodule morphism it satisfies 0iy=(y ® 7)A. One easily

verifies that </,xy and 0xy_1 are inverse in Reg (77, 77 ® 77) as are (y ® 7) A and

(y-1 ® S)A. By uniqueness of inverses we are done.

(c), (d) By (b) and Example 8.3 S is a coalgebra morphism. Using this fact one

easily computes that the map given in (c) is the left inverse to y„. Using the fact that

2<n) A(D • (S(hi2)) ■ a) = a for all a e A, h e 77 and that Sisa coalgebra morphism one

easily computes that H-+A#„H,h^ 2cw S^-a-^h^ ® S(h(3))) #,5(A(4)) is

a right inverse to y„. Thus the two inverses are equal and y„ is invertible.    Q.E.D.

Lemma 8.3. Let (0, B) be a cleft extension of A by H and y e Reg (77, B) a

comodule morphism.

(a) The map

A&H-+B,       a®A-+ay(A)

is a linear isomorphism.

(b) If Py is the map B-+ B, b -*• 2«» A(0)y_1(A(1)) then \mPy^A and the map

B^A®H,       A->2 py(bm) ® A(d
(»

is the inverse isomorphism to the isomorphism given in (a).
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Proof. In the proof we never need use that (>p, B) satisfies the 3rd condition in the

definition of an extension.

4>py(b) = t(2 w-^u))) = 2 «UrT^y
\(i» / (b)

= 2 6<o)y_1(Ak2)) ® ba)S(b(3)) by cocommutativity
(6)

= 2 b<mY~\bœ) ® 1,   for all b e B.
(6)

Thus ImPy^A. Similar types of calculation show the linear maps in (a) and (b)

are inverse; hence, are isomorphisms.   Q.E.D.

The above lemma is similar in spirit to [18, p. 221, Proposition 2.6].

Lemma 8.4. Let (tp, B) be a cleft extension of A by H and y e Reg (//, B) a

comodule morphism.

(a) The image of the map o(y)=[m(y ® y)] * [y~1m]: H ® H^-B lies in A and

o(y) is a 2-cocycle in Reg+ (//, A).

(b) Ty: A #aMH, a #aMh -* ay(h) is an isomorphism of extensions.

Proof. The map a(y) is given by g ® A-^ 2(i).(«>y(S<i>)>'(A(i))y~1(g(2)A<2>). A

calculation shows <p(a(y)(g <8> h)) = [a(y)(g ® A)] ® 1 which implies \n\Jo(y)<^A.

A further calculation—involving the 3rd condition in the definition of extension

—shows that Ty is a multiplicative morphism; i.e., Ty(xy) = Ty(x)Ty(y). Lemma 8.3

implies Ty is bijective and thus A #a(y)H is an associative algebra with unit 1 #<,<,> 1.

Thus a(y) satisfies the conditions of Lemma 8.1. o(y) has inverse [ym] *

[mt(y "x ® y ~1)]. As with o(y) one checks that Im o(y) ~1<=A. Now a(y) e Reg2 (//, A)

and satisfies the conditions of Lemma 8.1 is equivalent to a(y) being a 2-cocycle in

Reg2+ (//, A).

We have already pointed out that Ty is an algebra isomorphism. Clearly Ty\A =IA

and Ty is a morphism of right //-comodules. Thus it is an isomorphism of exten-

sions.   Q.E.D.

Lemma 8.5. Let (<p¡, B¡) be extensions of A by H for /= 1, 2 and let T: Bx -> B2 be

a morphism of extensions. T is an isomorphism if(>px, Bx) is cleft.

Proof. Suppose (\px, Bx) is cleft and y e Reg (//, Bx) is a comodule morphism.

Then Ty ë Reg (H, B2) is a comodule morphism and a(y) = a(Ty). Clearly the

diagram,

A#<hy)H—> Bi

B2

is commutative. By Lemma 8.4 the horizontal and vertical maps are isomorphisms

which imply F is an isomorphism.   Q.E.D.
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Definition. If (0¡, 77¡) are extensions of A by H for /= 1, 2, we write (0ls Bx)

~ (02. 772) (or simply Bx ~ 772 where \fix and 02 are implicit) if there is a morphism of

extensions from Bx to 772.

By Lemma 8.5 " ~ " is an equivalence relation amongst cleft extensions and by

Lemma 8.4 every cleft extension " ~ " a crossed product extension.

Theorem 8.6. If H has an antipode there is a bijective correspondence between the

equivalence classes of cleft extensions of A by H and H2(H, A). The correspondence

is gotten by choosing a crossed product from the equivalence class and passing to the

■ homology class of the 2-cocycle determining the crossed product.

Proof. As mentioned above each cleft extension " ~ " a crossed product so that

a crossed product lies in each equivalence class. The next lemma implies the

theorem.

Lemma 8.7. A §„H~A #,77 if and only if <j and r are homologous 2-cocycles in

Reg2+ (77, A); i.e., a * T~1 = D\(e)for e e Reg^ (77, A).

Proof. If <j*T~1 = D1+(e) for ee Reg1* (77, A) we define T: A #„77-+ A #, 77,

a#„A-> 2()t) ae(h{X)) #,A(2).  A calculation  shows that this is a morphism of

extensions so that A §„H~A #,77.

Conversely, suppose T: A #aH^-A #,77 is a morphism of extensions. Define

e: H-+A to be the composite (7#,e)7y„. (Recall y„: 77-> A #„77, A -> 1 #„A.)

One easily checks that T(a§ah) = 2(«> ae(ha)) #, A<2). Thus

(*)

(**)

T[(l #„g)(l #„A)] = TÍ 2  o(gm ® A(1,)#„g(2)A(2)\
W).(B) /

=   2   CT(&i> ® A(1))e(g(2)A(2)) #tg(3)A(3).
(0).(B)

T(\ #,g)T(\ #„A) = (2 e(g<i>) fe>)(2 KV,) #, h(2))
\(8) / \(B) /

2  e(ga))(g(2) ■ e(A(i)))r(g(3) ® A(2)) #tg(4)A(3).
«.(B)(«,(B

Equating (*) and (**) and applying 7#t e implies ct * [ew] = [e ® e] * [0(7 ® e)]r.

Also e(l)=l. Thus if we show ee Reg (77, A) it follows eERegi (77, A) and

Z>i(e) = CT* t"1.

Since r(l#„A) = 2(We(A(1))#tA(2) we have that Ty„ = e*yz or [Tya]*yI~1 = e.

Thus e_1=yt * [Ty,-1]. A calculation shows 0Te_1(A)=A ® 1 so that Imc"1^^.

Q.E.D.
In §7 the product of extensions is defined. This induces a product structure on the

equivalence classes of cleft extensions. One can show that the product of the

extensions A#„H and A #,77 is isomorphic to A #„.,77 so the correspondence

given in Theorem 8.6 is a group isomorphism. The equivalence class of A # 77

corresponds to the identity of 772(77, A).
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9. The Brauer group over A. Let H be a cocommutative Hopf algebra. An

element he His called grouplike if A(A) = A ® A and A=¿0. For such A, £(A)= 1 and if

//has an antipode S then /* S=e = S * /implies S(h)=h~x. Let G(H) denote the

set of grouplike elements of H. If g, A g G(H) then gA e G(H); also, 1 g G(H).

If A is an //"-module algebra the map tr(g): A-* A, a->g-a is a homomorphism

when g g G(H).

Theorem 9.1. Let A be a finite normal field extension ofk which is an H-module

algebra. If AH = k, [A:k] = dimkH and Ms): A -> A | g e G(H)} includes all

automorphisms of A over A then A#„H is a central simple k-algebra for any 2-

cocycle o in Reg?, (H, A). The unit in A#aH is 1 #„ 1, A fak^A is a maximal

commutative subalgebra and A #„H has splitting field A.

Proof. Since o is a 2-cocycle in Reg2 (//, A) it follows from Lemma 8.1 that

A #„ H is associative with unit 1 #«, 1.

Since A is an //-module there is the associated representation tt: //-> End A.

A is a left /l-module under left translation which gives a representation i : A -^

End A. We claim r: A# H -> End A,a# A -> i(a)ir(A) is an algebra isomorphism.

^MAMAMA") - 2 i(a(h{xyb)Whafi)
cd

for a, b e A, h, h e H and thus t is an algebra morphism. Since dimfc A §H

= L4:A]2=dimfc End A it suffices to show that t is surjective. This is implied by

[14, p. 22, Theorem 2] whose hypotheses we show are satisfied. Im t is a subring

of End A since t is an algebra morphism. i : A -> End /4 gives End /I a vector

space structure over ,4, where af= i(a)f. Im t is a finite dimensional /I subspace.

Finally {xeA \f(xy) = xf(y) for all ye A, fe Im t} = A; in fact, {xg.4 |/(jc)

= x/(l) for all/G Im 7r}=A because AH = k.

In particular w. H -^- End /I is an injective algebra morphism and the elements

{"■(g) I ge G(H)} are distinct homomorphisms of ,4 which are automorphisms

since A is a finite field extension. Since automorphisms of a finite field extension

have finite period, if g g G(H) then i-(g)n = 7r(g) "x for some 0 < « g Z. Since tt is

injective and G(H) is closed under multiplication, gn=g~x and G(//) is a group.

The elements 1 §ag where geG(H) have left inverse a'x(g~1 ®g)#„g_1;

thus to show that A §aH is simple it suffices to show that any nonzero 2-sided

ideal of A #„// contains an element of the form 1 §cg, for g e G(H).

A#0 H has a left /I ® ^-module structure where (a ®b)- (c §„ A) is defined to be

(a#,l)(c#oh)(b#al) = lih)ac(ha)-b)#ahi2), for a,b,ceA, heH. Any 2-sided

ideal in A #„ H is an .4 ® ,4 submodule. Thus showing that the simple A ® A

submodules are of the form A #akg for ge G(H) implies that A #„// is simple.

We consider both A§„H and A ® A as vector spaces over A by having A act

on the left factor. Then A ® A is an ^-algebra (the scalar extension of A from A to

/f) and A #„H is a module for ,4 ® /i over A; that is, the elements of A ® A act

v4-linearly. We have the ,4-linear map a: A #„H^> HomA (A ® A, A) where
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<a(a#„A), b ® c) = ab(hc). The fact that t is injective implies a is injective and

thus by dimension a is an ^-linear isomorphism. By means of a we identify

A#aH with Hom^ (A ® A, A). Under this identification the given module

structure on A#aH corresponds to the contragredient structure to A ® A acting

on itself by left translation. Indeed,

{(a ® b)(c #„A), ¿ ® e> = 2 <ac(hiX)-b) #„A(2), d ® e>
(B)

= 2 ac^(A(D ■ A)(A(2) • e) = acrf(A • (be))
(i)

= <c #„A, ad ® Ae>,

for a, b,c,d,eeA, he 77. Thus the simple submodules of A #„77 are the an-

nihilators (considering A#„H=HomA(A ® A, A)) of the maximal ideals of

A® A.

For g £ G(77), (a ® A)(l jfag)=a(gb) #„g and thus ^ #„ Ag has ^-dimension

1 and is a simple A ® A submodule. By [14, p. 25, Theorem 3] {-rr(g) \ g e G(77)} is

A-linearly independent in End A and thus G(77) is a A-linearly independent set.

This implies {A §„kg \ geG(H)} consists of distinct simple submodules. To show

this set contains all the A ® A simple submodules it suffices to show that A ® A

contains not more maximal ideals than the cardinality of G(77).

Let M be a maximal ideal in A ® A and let £2 be an algebraic closure of A.

Since A ® A is an ^-algebra (A ® A)\M is an extension field of A and there is an

A-\\ntax algebra morphism y: A ® A -*■ Q with kernel M. This shows that there

are not more maximal ideals in A ® A than there are ,4-linear algebra morphisms

from A ® A to Cl. A-> A ® A, a -> 1 ® a induces a bijection Hom¿ (A ® A, Q)

-> Horn (/4, £2) and thus there are not more maximal ideals in A ® A then there are

A-linear algebra morphisms from A to Cl. A is a normal extension implies any

algebra morphism from A to Q. has image in A and thus corresponds to an auto-

morphism of A. By hypothesis every A-automorphism of A can be realized as n(g)

for some g e G(H). Thus A #„ 77 is simple.

The above also implies A jf„k is a maximal commutative subalgebra in A #„77.

Since if N=Y*er(A ®/4fl>/l) then the centralizer of A #„A in ,4 #„77 is

the submodule 5 of .4 #„77 on which the maximal ideal acts trivially. By the

"contragredience" of the module, S is the annihilator of N (considering A #„77=

Horn,, (/Í® A, A)). Thus S is a simple submodule and must equal A #„A since

it contains A #„A.

The preceding paragraph implies that the center of A #„77 lies in A #„A. If

a #„ 1 £ A #„A and a £ A we can choose A £ 77 where ha^e(h)a. Then

(1 #„ A)(a #„ 1) = 2 (A(i, • a) #„ A(2)   and   (a #„ 1)(1 #„ A) = a #„ A.
(ft)

Applying 7#„£ to the right-hand sides yields ha^e(h)a and thus a#„l does not

lie in the center of A #„77. Thus the center of A #„77 is A#„A=A.

By what we have already shown that A#„H is central simple over A with
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maximal commutative subalgebra A #0k = A it follows from [4, p. 119, Proposition

7] that A is a splitting field.   Q.E.D.

Corollary 9.2 (to the proof of theorem 9.1). Under the hypothesis of

Theorem 9.1 except that a need not be a 2-cocycle, (but still o e Reg2 (77, A)), then

A#aH is a nonassociative algebra which contains no nontrivial 2-sided ideals.

Proof. As before the elements 1 #„g have left inverse a~1(g~1 ®g)#<!g~1

for g e G(H) and it suffices to show any nontrivial 2-sided ideal in A #„77 contains

1 #„g for some g £ G(77). For a, b, c e A, A e 77 we have ((a #„ l)(c #„A))(A #„ 1)

= (a#„l)((c#„A)(A#„l)) and thus ,4 #„77 is an A ® ^(-module as before. The

rest of the proof goes exactly as before.   Q.E.D.

Corollary 9.3 (to the proof of theorem 9.1). Let A be a finite normal field

extension ofk which is an H-module algebra and assume AH = k, [A : k] = dimfc 77 and

{77(g): A-> A \ g e G(77)} includes all automorphisms of A over k. Then the minimal

nonzero subcoalgebras of H are of the form kg where g e G(77).

Proof. Let a be any 2-cocycle in Reg2 (77, A). If C is a subcoalgebra of 77 then

A #„C is an A ® A submodule of Ajf0H. Thus A#0C contains A #akg for

some g e G(77) which implies Age C.   Q.E.D.

Corollary 9.3 implies that the simple subcoalgebras of 77 are 1-dimensional. By

the remarks preceding Theorem 8 in [10, §3] it follows that 77=09eG(i/) Dg where

each Dg is a connected subcoalgebra of 77 whose grouplike element is g. If 77 is an

algebra then Horn (77, B) is naturally isomorphic as an algebra to the direct

product of {Horn iDg, B)}giGiH). Thus an element fe Horn (77, 77) is invertible if

and only if f\Dg e Horn (£>„, B) is invertible for all g e G(77). By Lemma 6.3 we

have that/is invertible if and only if/(G(77))c5r. in the proof of Theorem 9.1

we observed G(77) is a group. Thus 7 e Reg (77, 77) and 77 has an antipode.

Definition. If A is a finite normal field extension of A which is an 77-module

algebra, A" = k, [A:k]=dimkH and {nig): A-^ A |g£G(77)} includes all auto-

morphisms of A over A then we call 77 a Galois-Hopf algebra (G-H algebra) of the

extension A over A.

In general there is not a unique G-H algebra of A over A. When A is separable

and normal the G-H algebra of the extension is unique and is the group algebra of

the Galois group. (In other words 77=AG(77).)

Definition. Let B be an arbitrary algebra containing D which is an 77-module

algebra. We say that the action of 77 on D is B-inner if there is fe Reg (77, B)

where A-i/=2(h)/(A(i)) #_1(A(2)) for all he H,de D. We say such / gives the

5-inner action.

If there were /, g e Horn (77, B) such that hd=Z{h)fiha)) i/g(A(2)) then letting

d= 1 and using A-1 =e(A)l shows that g is a right inverse to/

Suppose the action of 77 on D is TMnner and given by/e Reg (77, B). Then

2("ur¿)/(A(2)) = 2/(»u>)#"1(A(2))/(A(3)) =fih)d.
(ft) (ft)
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Conversely if fe Reg (//, B) where for all A e H, d e D, /(A) d= 2 « (A(1) • d)f(hm)

then

A-rf = 2 (hayd)f(hm)f-x(h(3>) = 2f<!kádf-\hiK).
(ft) (ft)

Note that if g g G(H) then gd=f(g) df'1(g) and it is easily shown that/-1(g)

is just the inverse to/(g) in Br. Thus g acts as a classical inner automorphism. If

le H and A(/) = 1 ® /+/ ® 1 then / acts as a derivation on B. One easily checks

that £(/)=0 and that if/(l)= 1 then f~x(l) = -/(/). In this case l-d=f(l) d-df(l)
so that / acts as a classical inner derivation. If 1 =A0, hx- ■ ht e H and A(An) =

2 hi ® A„_i then /(An) fl"=2 (hfd)f(hn-t) for «=0,...,/. Thus / is inner in the

sense of [13, p. 224].

Example 9.1. Let A be a commutative algebra which is an //-module and let

a g Reg2 (H, A). Recall we have y„: //-> A #„//, A -* 1 #ffA. For a e A

Ya(h)(a#a\) = (1 #ffA)(fl#„l) = 2 (A(i)-a#,A(2))
(ft)

= 2(A<i>'ö#*1)>'<'(/!<2>)-
(h)

If we identify A with ,4 jf-„k this becomes y„(A)a = 2«) (Aa) • a)y0(A(2)). Thus when

H has an antipode the action of H on A is ^ #„//—inner as given by yff, since

y, g Reg (//, ,4 #«,//) by Lemma 8.2.

Proposition 9.4. Let H be a G-H algebra of the extension A over k and let

a, ß e Reg2 (//, A) be 2-cocycles. There is a homomorphism T: A #aH -> A#ßH

which is the identity restricted to A if and only if o and ß are homologous 2-cocycles;

i.e., o*ß-1 = Dx+(e) for e e Reg1. (//, A).

Proof. By Lemma 8.7 it suffices to show that any such F is a morphism of ex-

tensions. Since ris an algebra morphism and T\A = IA it suffices to show that Fis a

morphism of right //-comodules.

Consider e: H-* A jfBH, e = (Ty„) * y^1. We shall show Im e<^A by showing

Im e centralizes the maximal commutative subring A (=A#ek). In the following

computation we shall use the fact that 2w y<r1(A(i))ay<7(A(2)) = 5(A)-û, ae A where S

is the antipode for H. This can be computed directly using the expression for yâx

given in Lemma 8.2. For ae A, he H

ae(A) = 2fl[Fy,(A(1))K1(A(2))
(ft)

= 2 [7'(fl^(A<i,))]yJ1(A(2)) = 2 \nyo(hwv;x(h^ay¿h{3MyFx(hw)
(ft) (ft)

= 2 [T(yo(hm)[S(hi2))-a})]y^(hi3)) = 2 Tya(KiÄS(h^-a\yß-\hi3))
(ft) (ft)

= 2 [^(Ä(1,)K1(A(2,)y,(A(3))[5(A(4))fl]yi-1(A(5))
(i)

= 2 [7V^(A(i))K1(A(2,)[A(3)[5(A(4))-fl]]
(ft)

= 2 TyAhm)yßX(h(2))a = e(h)a.
(ft)
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Thus Ime^A  and  Tya = e*y¡¡.  This  implies  7(1 #„A) = 2od e(A(i>) #íA(2) and

thus 7(a#„A) = 2(ft)a^(A(i,)#iA(2) for all aeA, heH. This implies T is a right

77-comodule morphism.   Q.E.D.

The next result guarantees that often an action is inner.

Theorem 9.5. Let H be a Hopf algebra whose simple subcoalgebras are of the

form kg for g e G(H). Let B be a finite dimensional central simple A algebra which

has a semisimple subalgebra D which is an H-module algebra. Then the action of 77

on D is B-inner. f: 77 -*■ B giving the inner action can be chosen to satisfy f (I) = 1.

Proof. The following proof is a generalization of the proof of [11, p. 480,

Theorem 3]; thus, the theorem generalizes a result of Jacobson on inner derivations.

We consider B ® 77 as a right 7>-module where (a ® A) d= 2(«) a(A(1) • d) ® A(2)

and a left 5-module where a(b ® A) = ab ® A, for a, be B, de D, he 77. Thus

B ® 77 becomes a left B ® £>*-module where D* is the opposite algebra to D.

As follows from the standard results 77 ® D* is a semisimple algebra. Thus the

submodule B ® A(G(77)) has a complement and there is a 77 ® 7)*-module

projection C: B ® 77-► B ® k(G(H)).

For g e G(77) the map 7) ->- 7), t/-> go" is an automorphism of 7) with inverse

d-^g-'L-d. By [4, p. Ill, Corollary] there is N(g)e B7 where g ■d=N(g)dN(g)~1.

We choose A^l) to be equal to 1. As follows from the remarks following

Corollary 9.3, the elements of G(77) are linearly independent in 77 and thus N

extends to a linear map N: k(G(H)) -+ B. B has a natural left 7?-module and right

7>-module structure induced by multiplication and thus is naturally a left B ® £>*-

module. Using the fact that N(g)d=(g-d)N(g) one easily verifies that M: B

® A(G(77)) -> B, b ® g -> bN(g) is a morphism of B ® 7)*-modules.

Let /: 77 -^ 77 be the composite 77 -> fi ® T7.»i£» 77 where A -+ 1 ® A is the first

map. Using the fact MC is a 5 ® T>*-module morphism we have for he H, de D,

f(h)d=(l ® d*)MC(\ ® A) = 2 MC(hayd ® A<2))
(ft)

= 2 Vki>-d ® 1*)A/C(1 ® A<2)) = 2 (A(i,^)/(A(2)).
(ft) (ft)

For geG(H) we have/(g) = MC(1 ^g)-N(g) since C is a projection. Thus

/(1)=1 and/(G(77))<=77r. By the remarks following Corollary 9.3, f(G(H))^B7

implies that/E Reg (77, B). Thus the action of 77 on D is 5-inner and given by/

Q.E.D.

Lemma 9.6. Let H be a G-H algebra of the extension A over A and let Bbea central

simple A algebra with maximal commutative subalgebra A. Assume the action of H on

A is B-inner given by fe Reg(77, B) where f(\) = \. 7/<7=[mB(/®/)] * [f-1mH]:

H ® 77-► B then Im a^A and a is a 2-cocycle in Reg2 (77, A). The map T: A§„H

-> B, a#ah-> af(h) is an injective algebra morphism.

Proof. We first must show that Im a^A. This involves much calculation.
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We define A -> a=2wf~1(ha)W(hw) forheH,aeA. Clearly 2m haV(hi2) —a)

= a. We must first show that h-^ae A. If beA then

b(h^a) = 2bf~1(ba))af(hw) = 2f~1^)f(.h^)bf-x(hm)af(hM)
(ft) (ft)

= 2 Ä<i) "* «*<» ■ bw = 2 *a> -' w*«» ' *))
i») (î»

= 2/"1(/,<1))fl/(A(2))A/-1(A(3))/(A(4)) = (A-c)6.
<ft)

The fact that /í is a maximal commutative subalgebra now implies that h—^aeA.

Again using the same technique if A, h e H, a e A

ao(h®h)=   2  af{haM(h~a))f-\hM
(ft>,(A)

=   2 /(Aa>)(A(2)-fl)/(A~a))/-HA(3>A"(2))
(ft), («)

=   2 nbiv)f^œ)l^-(hm-a))f-x(hl3A3,)
(ft).(ft)

=   2 f(hm)fQia))f ' 1(A(2)Â(2))(A(3)Â(3) ■ [A~(4) — (At4) — a)])
(ft).(A)

=   2 /(Ä(i))/(^1))/-1(A(2,A"(2,)fl.
(ft). (ft)

Thus Im (7<=^ since A is a maximal commutative subalgebra. a has inverse/«iH *

l/»s*(/-1 ®/-1)] and a similar calculation to the above shows that Im«*-1^.

Thus a g Reg2 (H, A). Using /(1)= 1 one easily verifies that o e Reg2 (//, A).

One easily checks that Fis a multiplicative morphism; i.e. T(xy) = T(x)T(y) for

x,ye A #„//. F is not zero since T\A = IA. Thus by Corollary 9.2 F is injective.

Since B is associative F being injective implies A #aH is associative and thus by

Lemma 8.1 (a) a is a 2-cocycle.   Q.E.D.

Theorem 9.7. Let H be a G-H algebra of the extension A over k. In the Brauer

group over k let N be the normal subgroup consisting of the similarity classes of

algebras which are split by A. There is a natural group isomorphism N—*■ H2(H, A).

Proof. This proof follows the pattern found in the remarks in [11, pp. 486-487].

From each class in N choose an algebra which contains A as a maximal com-

mutative subalgebra. Any two such representatives are isomorphic by an isomor-

phism leaving A fixed. By Lemma 9.6 each representative has a subalgebra

isomorphic to A #„// for a 2-cocycle o e Reg^ (H, A) and the isomorphism leaves

the elements of A fixed. By Theorem 9.1 A#„H has A = A#ak as maximal

commutative subalgebra and thus the representative algebra is isomorphic to

A #„//. (This implies all the representatives have dimension [A:k]2.) We map the

similarity class of the representative algebra to the homology class of o. By Prop-

osition 9.4 this map from A^ to H2(H, A) is well defined and injective. Clearly it is

surjective since for any 2-cocycle a in Reg2 (H, A) the similarity class of A #„//

maps to the homology class of o.
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We must show that the correspondence is a group morphism. Let ct, t be two

2-cocycles in Reg2+ (77, A). We consider A#aH as a vector space over A by

a(A#„A) = aA#„A. Similarly for A #,77. The right translation action of A #„77,

04 #,77), on itself is ,4-linear and thus (A #„77) ®¿ (A #,77) has a natural right

(,4 #„77) ®fc 04 #,77)-module structure. The ring of endomorphisms of (A #„77)

®j404#,77) which commutes with the action of (.4 #„ 77) ®fc 04 #, 77) is a

representative—with A as maximal commutative subalgebra—of the similarity

class of (A #„77) ®fc 04 #,77), which is the product of the similarity classes of

A #„77 and A #,#. The left module action of A #„.,77 on (/Í #„77) ®A (A #T77)

given by

(a#^h)-[(b#ah)®A(c#M

- 2 Ka#<Ai,)(A #,£)] ®m [(1 #IA,2))(c#,A~)],
(ft)

imbeds ,4 #„.,77 in the representative of the product of the similarity classes; i.e.

the commuting ring of endomorphisms. Thus the product of the classes maps to the

homology class of ct * t which is the product of the homology class of a with the

homology class of t.   Q.E.D.

As we mentioned in Example 5.2 if A is a finite normal and modular extension of

A then there exists a G-H algebra of the extension. It is shown in [23] that for any

finite extension Ä over k there is a unique minimal extension A over Ä where A is

finite normal and modular over A. Thus every central simple A algebra has a finite

normal modular splitting field A over A. Thus the union of the subgroups N—as in

Theorem 9.7—is the entire Brauer group over A.

Theorem 9.7 and Theorem 5.1 combine to give a group isomorphism between N

and H2(A), the second Amitsur cohomology group.
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