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1. Introduction. In his thesis M. Schilder [1] has proven an analogue of the

classical Laplace asymptotic formula for Weiner integrals. It is the purpose of this

paper to generalize this formula to expectations on a large class of Gaussian

processes, and to demonstrate a close connection with Hammerstein integral

equations.

We say that p(a, r), 0^ era r^t, is a covariance function if p(e, r) = p(r, a) and if

for any finite set 0 < tx < ■ ■ ■ < rn < t the matrix [p(rt, t,)] is nonnegative definite.

A Gaussian process is determined by a covariance function p(a, t), O^crgr^r,

and a mean function p(r), Ogr^r. Unless explicitly stated otherwise, we shall

assume that the mean function is identically zero.

If the covariance function p(a, t) is such that

np(o, t)2 dtrdr < oo
)

and is positive definite, then it defines a positive definite Hilbert-Schmidt operator

A, through the equation

(Ax)(a) = J   p(o, t)x(t) dr, X £ F2,

where L2 is Hubert space of functions x on [0, t] with norm

(X,X)X'2=  [J^OOrfr]1'2.

We shall denote by {kj()} the normalized eigenfunctions and by {pt} the re-

ciprocal eigenvalues, ordered in increasing magnitude, of the operator A.

When p(o, t) is continuous and positive definite, and if {<x¡} is a sequence of

independent Gaussian random variables with mean 0 and variance 1, then [5, pp.

30-34, also §5] there exists a Gaussian process with sample paths x(t), Q-¿T¿t,

represented by

*»-£&•*»

except possibly on a t set of Lebesgue measure 0.
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Using this representation we shall present a heuristic formalism for manipulating

Gaussian expectations which makes many of the theorems about such expectations

formally transparent.

Let £j?{ } denote the expectation on the Gaussian process with covariance

function p(a, t) and sample paths x(t), let E{ } denote the expectation over infinite

product space with the measure generated by a¡ on each real line, and let En{ }

denote the expectation with respect to the finite product measure generate¿ by

{«Jf-i.
It follows from [5, pp. 30-31] that

2{G(x)} = £{g(|^Wí(.))

for every functional G(-) for which one side of the above equality exists. From the

Fubini-Jessen theorem [4] we then obtain

£Í{G(x)} = £{g(|^U¡(.))}

(i.i)

xexp(~2? av ri****

rift/(2T)" ■••        G  2w(-)+   2   777"<(-)
i = X J       J-x        J-co      \j = i i = n + l V Pi /

where a.e. means almost everywhere with respect to the product measure generated

by to-
Letting xn() = 2il=17?ii/i() and noticing that 2t=ivfPi=(^'ll2Xn, A~ll2xn) we

obtain from (1.1) that •

n Pi\
E!{G(x)} =a.e. lim (^)    £ • • •£ G(xn(.)+(|   £ *))

(1.2)

x exp (-i (/í-l'2xn, ^-1/2xn)) JÍ <*fc-
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Proceeding heuristically, we write

lim GÍxn( ■ ) +  2   -77 "A ■ )) «P ( - i (^ - m*n, A ~ v*xj)
(13)      B~°°       \ i=n + lVPi I

" = " G(x) exp (-* (A-^x, A-ll2x)),

/n Pi\     /•»/•»» r

where the symbol J Sx represents a translation invariant integral in function space,

and is called the flat integral.

Actually, neither limit (1.3) or (1.4) exists separately. However, as a useful

formal device we write

(1.5) E£{G(x)} " = " f" G(x) exp (-\(A~Xl2x, A"Xl2x)) 8x

where the right hand side is to be treated as a one dimensional Riemann integral.

The classical Laplace asymptotic formula may be written in the form

flA u_}1<aG(x)exp(-F(x)/X2)dx
(1-6) um—¡^--,—F/ ,n2s  ,— = G(x*)

A-o     j?x exp (-F(x)/A2) dx

where F(x), -oo<x<co, is assumed continuous and to have a unique global

minimum at x*. Furthermore, G is assumed continuous at x*.

Let G() and F() now denote functional defined on the sample paths of a

Gaussian process with covariance function p(o, t). Using the flat integral, a formula

analogous to (1.6) is

]jm J G(x) exp (-{j(A~x'2x, A-x'2x) + F(x)}IX2) 8x

*-°     J" exp (-tt(A~ll2x, A-Xl2x)+F(x)}/X2) 8x

J G(Xx) exp ( - {F(Xx) - j(A - x'2x, A - "2*)}/A2) 8x

1 ' ) ™    J exp ( - {F(Xx) - $(A - Xl2x, A : 1/2x)}/A2) 8x

_        Fg{G(As)exp(-F(A*)/A2)} _

"a™     F£{exp(-F(A*)/A2)} "^

where it is assumed that the functional \(A~xl2x, A~ll2x)+F(x) has a unique

global minimum at jc*. The last .equality in (1.7) is the conclusion of our main

theorem which is stated more precisely in Theorem 4.1.

§5 contains the applications of Theorem 4.1 to Hammerstein integral equations.

Under the conditions of Theorem 5.1, we obtain a closed form solution of the

Hammerstein integral equation

*(a)+£ p(tr, r)/(r, X(r)) dr = 0.
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The representation obtained is the limit of ratio of two expectations and makes

Hammerstein's original conditions for proving existence of a solution to the above

integral equation appear naturally as integrability conditions. The last part of §5

deals with the case of Brownian motion, i.e., p(a, r) = min(a, t). Through the

Feynman-Kac formula [9]-[ll] we are able to relate the solution of the above

integral equation, with a kernel closely related to min (er, t), to the Green's function

of a linear parabolic equation. In this case the Hammerstein integral equation is

equivalent to an ordinary differential equation.

§2 contains auxiliary lemmas needed in the proof of Theorem 4.1.

§3 contains a Gaussian type estimate on the distribution of the supremum under

certain conditions on the covariance function. It is this estimate that is used as a

hypothesis in the statement of Theorem 4.1 in §4.

Acknowledgments. The author would like to thank his thesis advisor, Prof-

essor M. Donsker, for his valuable help, and Professor S. Varadhan for suggesting

the proof of Lemma 3.1 as well as many helpful discussions.

2. Properties of H(x)=\(A~ll2x, A~ll2x) + F(x). In this section we define the

derivative of a functional and demonstrate some properties of 77(x) needed for the

proof of the theorem in §4. The last part of this section shows the integrability of

certain functionals.

Let C be the space of continuous functions on [0,/] with norm, ||x|

= sup0sTs¡ |x(t)|, and let L2 be the Hubert space of functions on [0, /] with

norm

(x,xy2= [pwrfr]"2.

Let F(x) be a real valued functional defined on C. If 0 g C, then the derivative

of F in the direction 0 at x is

]imF(x+£cD)-F(x)!
£-0 e

whenever this limit exists.

If there exists a bounded linear functional F such that the derivative of F in the

direction 0 at x is given by F($), then F is called the Gateaux differential or

variation of F at x.

When F is also continuous in the L2 topology it follows from the Reisz repre-

sentation theorem that there exists an element of L2, 8F(x)/8x(r), such that

tW -f ' 5F(x) ., .  .

In this case SF(x)/Sx(t) is called the derivative of F with respect to x at the point r.
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In what follows p(o, t), 0^<t, rg t, will denote a continuous, symmetric, positive

definite kernel. A will denote the Hilbert-Schmidt operator defined by p(a, t), i.e.

xeL2.(Ax)(o) = £ p(o, t)x(t) dr,

We remark that A is a compact, self adjoint, positive definite operator on L2 with

reciprocal eigenvalues {pt}, p¡ > 0, and normalized eigenfunctions {«¡(a)}.

Lemma 1. A112 is a Hilbert-Schmidt operator with kernel K(o, r) and is a com-

pletely continuous mapping of L2 into C [4].

Lemma 2. (a) \\All2x\\2éM(x, x), M=sup0sc%t p(°, <*)■

(b) (Ax, x)¿(x, x)/px where i/px is the largest eigenvalue of A.

(c) (Ax, Ax)è(Ax, x)/px.

(d) \\Ax\\2=M(x,x)/Px[4].

Let D(A~X) denote the domain of the operator A'1. We now introduce a new

Hubert space, LA, defined as the Cauchy completion of the space D(A "1) under the

norm, (A ~ xx, x)112.

Lemma 3. L2A = D(A112) [3].

Let [x, y]A denote the inner product on L2. From Lemma 3 it is clear that

[x, x]A=(A~ll2x, A~ll2x). We also note that in terms of F2 Lemma 1 can be

rephrased to read that every bounded set in L2 is precompact in C.

Lemma 4. Let F(x) be a continuous functional on C satisfying

F(x) = — %cx(x, x) — c2,   cx < px, c2 any real number.

It then follows that there exists at least one point x* e D(A~112) at which

H(x) = i(A-ll2x,A-1'2x) + F(x)

assumes its global minimum value for all xeC.

Let B be the set of points at which H(x) assumes its global minimum, and let

{xn} be a minimizing sequence of H(x). We then have B<=D(A~112) and that

there exists a subsequence {xn) of {xn} such that {xn¡} converges uniformly to a

point x* e B.

Proof. By Lemma 2.2(b) it follows that

i(A~xl2x,A-1'2x)+F(x) Z +{<px-cx)(x,x)-c2 }t -c2.

Thus, H(x) is bounded below. Assume that the global minimum of H is zero. It is

also clear when (A " Xl2xn, A ~ xl2xn) -> oo that

\(A~ll2Xn, A-xl2Xn)+F(xn) ^oo   as « -> oo.
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Therefore, the sequence {04 " ll2xn, A " 1,2xn) = [xn, xn]^} is bounded. By the

comments following Lemma 3 we see that {x„} contains a subsequence {xnJ which

forms a Cauchy sequence in C. Let lim^ „ xni =y e C. We shall show y e D(A ~ll2).

We note that {xnJ forms a bounded set in L2. Since every bounded set in Hubert

space is weakly precompact [4], and since Hubert space is weakly complete, we see

that there exists a subsequence of {xnJ which converges weakly in LA to a point

u e L2. To save on notation we shall denote this subsequence as {xnJ also.

By definition of weak convergence we see that

[z, xnt]A -* [z, u]A as i -*■ oo   for all z e LA.

In particular, when z g D(A -1) we have

[z, xn-u]A = (A~H, xn-u) -s- 0   as i -+ oo.

Since {xn,} converges uniformly to y it also follows that if z e D(A ~x) then

\(A~1z,xn-y)\2 Ú (A^z, A^zypd-y, xnf-j)->0   asi'-*co.

Therefore, we have

lim [z, xnt]A = (A- 1z, u) = (A- 1z, y)   for all zeD(A~x)

which implies that u=y e D(A~112).

In any normed linear space the norm is weakly lower semicontinuous [4], i.e.

xn ->■ x weakly implies

|x| ^ lim inf |x„|       (|x| = norm x).
n

Applying this to L\, we write 77(x)=£[x, x]A + F(x) and obtain

0 = lim 77(xni) = liminf(i[xn„xniL+F(xni)) ^ \[y,y]A+F(y) = 0.
i-»co Í

Therefore, \(A~ll2y, A~ll2y)+F(y)=0 which implies that y=x* for some x* g B.

Lemma 5. Let F(x) satisfy the conditions of Lemma 4. Assume that x* is the only

point of B that satisfies ||x—x*||^7?, and that H(x*) = 0. It then follows that, given

S>0 there exists a 6(8)>0 such that 8<\\x-x*\\ = R implies 77(x)ä 6(8).

Proof. From Lemma 4 it follows that every minimizing sequence {xn} that

converges in C and satisfies ||xn—x*|| ̂ 7? must converge to x*.

Suppose there exists a S>0 such that S< ||x—x*||^7? implies H(x)¿6 for all

6 > 0. But this implies there exists a minimizing sequence {xn} such that S = ||x„ - x* ||

^ 7?. The first comment shows this is a contradiction.

Lemma 6. If H(x) has a global minimum at x*, 77(x*)=0, and F is a continuous

functional on C, then

(a) imw [i04x,x)+F04x)]=0.
(b) Given r,>0 there existsaß>0such that (Amx-A~ll2x*, All2x-A~v2x*)<ß

implies i(Ax, x) + F(Ax) < r¡.
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Proof. If we write y=Ax, then for x e L2,

i(Ax, x)+F(Ax) = HA-iy, y) + F(y),       y e D(A~1).

Since D(A "1) is dense in LA = D(A "1/2), and convergence in LA implies uniform

convergence, we have part (a) of the lemma.

From the fact that H(x*)=0, it follows that

\(Ax, x)+F(Ax) = \\(Ax, x)-(A-xl2x*,A-Xi2x*)\ + \F(Ax)-F(x*)\.

By Lemma 2(a) we have

\\Ax-x*\\ = M1'2^1'2*-^1'2**)! S Mß.

Therefore part (b) follows from the continuity of the inner product on L2 and the

continuity of F on C.

Lemma 7. If p(v, r) is continuous and ifb>0,

Eßx{G(x)} = Dp(-b)E£{G(x+bAx) exp [-&2(Ax, x)-b(x, x)]}

for all integrable functionals G(x), where D„ is the Fredholm determinant of p(o, t).

We refer to [5] for the proof. Here we note that if one side of the above equality

exists so does the other and they are equal.

Lemma 8. Suppose p(a, t), O^ct, r^r, is continuous and there is a corresponding

Gaussian process with continuous sample paths, x(t), 0^t5¡í. Further, suppose that

ifa>h>0 then

(2.1) P{\\x\\Za}ïcexp(-ya2),

where c,y>0 depend only on h. Suppose F and G are real valued, measurable func-

tionals defined on C satisfying

(2.2) \G(x)\<exp(c\\x\\2),       c> 0,

(2.3) F(x) - — icx(x, x) — c2,       cx < px,c2 any real number.

If

0<A<nfin(7i£q#T(fn
\(cx/2+Mc/Px) \2c)   )

then

E>{\G(Xx)\exp(-F(Xx)IX2)}

(2-4) /   n
= D0l -jjE£{\G(Xx+Ax)\ exp(-{(iAx+Xx,x)+F(Ax+Xx)}/X2)}

is finite.
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Proof. The equality in (2.4) follows from Lemma 7, using ¿?=1/A. Using (2.2)

and (2.3) we have

E*{\G{Áx+Ax)\ exp (-{QAx+Xx, x)+F(Ax+\x)}/\2)}

(2.5) = ££{exp(cA2||x||2+2cA||x|| px|| + c||,4x||2)

x exp (—{QAx+Ax, x) — cx(Ax + Ax, Ax+Ax)—c2}/A2)}.

By Lemma 2(a), (b), (c) and (d) we have

\(Ax+Ax, x) —\cx(Ax+Ax, Ax+Ax) - A2c || Ax \2

= i(Ax, x)-$cx(Ax, Ax)+A[(x, x)-cx(Ax, x)]-X2[^cx(x, x) + c\\Ax\\2]

= i(l - cx/Px)(Ax, x) + A(l - cjpx)(x, x) - X2[cx/2 + Mc/Px](x, x)

= i(l - cx/Px)iAx, x) + A[(l - cx/Px) - A(Cl/2+Mc/Px)]ix, x)

which by our choice of A is

= ±il-cx/Px)iAx,x)+Xiil-cx/px)ix,x) ^ 0.

Using (2.6), Lemma 2(d) and our choice of A, we see that the right hand side of

(2.5) is

(2.7) = exp (-c2/A2)£<{exp (y/2||x||2 + 2(cyM/2Pl)1/2||x||3'2)}.

If we write/(t/)=F{||x|| < u} then the integral in (2.7) can be written as

(2.8) j\xp^ + 2(^y2^dF(u)

which by (2.1) is finite.

Lemma 9. If the covariance function pia, t), O^o-, t£?, is continuous, 0<a^l,

K>0and0<X<l, then

_.f      / , Kjx, x)a'2   (x,x)\\ < .       {K*Ka-«\

Proof. Let F(w)=P((x, x)1,2<w). Then

£*{exp (#(x, x)a/2/A2-a-(x, x)/A)} = J " exp iKua/X2'a-u2/X) dFiu)

= I exp (ÄV7A2 - « - u2) A) dFiu) +1

g exp (A'2»2 - «7 A<4 " 3a)/(2 " a)) +1

= 2exp(£2'<2-aYA«2-«'2>).

3. An estimate on the distribution of the supremum. The proof of the principal

theorem (§4) applies only to those Gaussian processes with continuous sample

paths x(t), and such that if a > A > 0, then

F(||x«^a)^cexp(-ya2)

where c, y > 0 depend only on A.
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In this section we state two conditions on the kernel p(a, t) which are sufficient

to ensure that the above requirements are fulfilled.

By a heuristic argument using the flat integral we should expect this result to be

true whenever p(o, r), O^a, T^t, and the sample paths x(r) are continuous by

using the flat integral [12].

In the first lemma below, we assume p(o, t), 0¿o,T^t, satisfies a Holder con-

dition of order a. It then follows as a special case of a theorem of Kolmogorov [6],

that there is a Gaussian process generated by p(o, r) with continuous sample paths

x(r), OS tú t.. In fact, as Ciesielski [7] has shown, the sample paths are Holder

continuous of order ß,ß< a/2.

The proof of Lemma 1 closely follows Prohorov's proof [8] of Kolmogorov's

theorem, the principal difference being we use Gaussian type estimates where

Prohorov, in the more general setting of that paper, is only able to use Tchebycheff

type inequalities. See [12] for proofs.

Lemma 1. If the symmetric, positive definite kernel p(a, t), 0=o-, t¿í, satisfies

(3.1) \p(o, r)-p(o', t)| ^ K\o-o'\a, F > 0, 0 < a g 1,

then there is a Gaussian process generated by p(a, t) with continuous sample paths

x(r), O^T^t, such that ifa>8>0

P{\\x\\Za}ïcexp(-ya2)

where c depends only on 8, and

9-24/ln2(aln2)4

Lemma 2. If p(a, r), 0 ̂  a, r ^ t is the iterate of a continuous, positive definite kernel

p(a, t), 0^ a, t^ t, then there is a Gaussian process generated by p(o, t) with continuous

sample paths x(t), 0^ t^ t.

Moreover, we have for a>0

P{\\x\\ > a} < c exp (—ya2),   fory < px/2M, M =   sup K(o, <r)
osugt

and c is independent of a [12].

4. Proof of the Main Theorem. Before turning to the proof of our principal

theorem we shall remind the reader of some notation that has been introduced.

Let C denote the space of continuous functions x, on [0, t] with norm ||jc||

= supoÉffst \x(o)\ and let L2 denote the space of square integrable functions on

[0, t] with norm

(X,X)X>2=  [£ **(*■) ¿r]1"-
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If p(a, t), 0=ct, T^r, is a symmetric, continuous, positive definite kernel (covari-

ance function), we denote by A the positive definite, Hilbert-Schmidt operator

defined by p(o, r), i.e.

(Ax)(d) =      p(o, t)x(t) dr,       x e L2.

The normalized eigenfunctions of A are denoted by {«¡(r)}, and the reciprocal

eigenvalues are denoted by {/>¡}, where the sequence {pj is ordered according to

increasing magnitude. The symbol F£{ } denotes the expectation on the Gaussian

process with covariance function p(o, t), mean function 0, and whose sample

paths are x.

Theorem 1. Let p(a, r), O^cr, r^t, be a continuous, symmetric, positive definite

kernel for which there is a Gaussian process generated by p(a, r) having continuous

sample paths x(t), 0g rg t(x).

Assume that ifa>h>0, then

P{\\x\\ ^ a} S c exp (-ya2),   where y > 0, c > 0,

depend only on h(2).
Let F be a continuous, real valued functional on C satisfying

E(x) = -\cx(x,x)-c2,       cx < Px,

where px is the smallest eigenvalue of A'1, and c2 is real.

Let x* denote a point at which

H(x) = i(A-xl2x,A~ll2x)+F(x)

attains its global minimum over x e C(3) and let

R-.^{l,{{Ci+^\^^Y*^-mn
Assume that

\F(x)-F(y)\ è Kx(x-y, x-y)a'2, \\x-x*\\ è 2F, \\y-x*\\ S 2R, 0 < afi 1.

Furthermore, suppose that x* is the only point in the sphere {x e C: \\x — x*\\ ̂ F} at

which H(x) attains its global minimum.

Finally, let G(x) be a measurable functional on C such that G is continuous at x*

and moreover suppose

\G(x)\ S exp (c3\\x\\2),       c3 > 0.

(*) Simple sufficient conditions for these hypotheses are given in §3.

(2) Simple sufficient conditions for this hypothesis were given in §3.

(3) It is proven in §2 that under these conditions H(x) attains at least one global minimum

x*eD{A-™)<^C.
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Under these conditions we have

(4.1) am *&*»> y fcfSapI , gy»a-o     £?{exp(-F(Ax)/A2)}

Proof. Without loss of generality we may assume 77(x*) = 0. It is also clear from

Lemmas 2.7 and 2.8 that in order to prove (4.1) it is sufficient to show

E£{\G(Xx+Ax)-G(x*)\ exp(-[(^x+Ax,x) + F(/fx+Ax)]/A2)} _

K    }   a™ £j?{exp(-[(l^x+Ax)+F(^x+Ax)]/A2)}

We shall prove (4.2) by breaking up the region of integration in the numerator of

the limitand in (4.2) into five subregions. Writing the limitand as a sum of five

fractions we then show that for e > 0 each fraction can be made smaller than e/5

by choosing A sufficiently small.

The sets into which we break up the region of integration are:

/î = {x:||Ax|| ZÏ8, \\Ax-x*\\ S *8},

H = {x:$8 < |Ax|| = R, Mx-x*|| = R},

Je = {x:\\Xx\\ = i8,$8 < \\Ax-x*\\ = R},

Ji = {x:R < ¡Xx\\, Mx-x*|| ^ 7?},

J5 = {x:R < Mx-x*||},

where 8 > 0 is chosen so that

(a) 8 < min (1, R),

(4.3)   (b) 0(8) < 1 (where 0(8) is defined in Lemma 2.5),

(c) ||x-x*|| < 8 implies |G(x)-G(x*)| < e/5,

and A > 0 is chosen so that

,4.4,    , < mi„ (,, [min (£ S2)]'>+ „-, Í il^. (X)">

We introduce the following notation : £j?e,{G(x)} will denote the expectation of

G over the set J,

E = £?{exp (- [QAx+ Xx, x) + FiAx + Xx)]/X2)},

£i = £j?e,K|G(^x+Ax)-G(x*)| exp(-[(i/ix + Ax,x) + F04x+Ax)]/A2)},

f- 1.5.
Let

(4.5) v < min (y82/64, 0(¿8)/8).

By Lemma 2.6(b) we can choose ß > 0 so that,

(4.6) 0 < ß < 0R-(l/2))/A/1'2,
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and   such  that   (All2x-A~ll2x*, A1'2x-A-ll2x*)ll2<ß  implies   that  $(Ax,x)

+F(Ax)<ri. Let

Bß = {x:(All2x-A-ll2x*,All2x-A-x'2x*)X12 < ß, \\x\\ < £}.

If xeBß we have by Lemma 2.2(a),

\\Ax+Xx-x*\\ S ¡Ax-x*\\+iS Mxi2(Alt2x-A-ll2x*,All2x-A-xl2x*)xl2+^

= Mmß+\   which by (4.6) is =F+i.

Using the hypotheses on F we then see that

F i E>eBt {exp (-1 [#Ax, x) + F(Ax)]j exp (-l.[F(Ax+Xx)-F(Ax)])

xexp(-^(x,x)U

â F«Bs {exp (-$) exp (-^ (*, x)«'2) exp (-1 (x, *))}

^exp^-l^ + A^ + A^FÍF,).

From (4.4) it follows that

(4.7) EZexp(-2v/X2)P(Be).

By (4.3)(c) and the definition of F we have,

(4.8) Ex S eE/5.

Using the hypotheses on G we see that

(4.9) |G(Ax+Xx)- G(x*)| è F3 exp (c3X2\\x\\2 + 2c3X\\x|| ||¿x|| + c31|¿x||2)

where F3 is some positive constant. If x e J% u J% it follows that

\\Ax+Xx-x*\\ S \\Ax-x*\\ + \\Xx\\ S 2F,

and that \\Ax\\ and [[Ajc|¡ are each bounded individually.

Therefore, (4.9) implies that for some positive constant F4

(4.10) \G(Ax + Xx)-G(x*)\ ¿ F4,       xeJ^KJj^,

while the hypotheses on F show

(4.11) \F(Ax+Xx)-F(Ax)\ = Kx(x,x)a'2,       xeJ£uj£.

Using (4.10) and (4.11) we see

F2 = AtfS«) {exp (-1 MAx, x)+F(Ax)]j exp (^ (x, x)a'2-± (x, *))}

which by Lemma 2.6(a) is

í KtES.4{exp (Kx(x, x)<"2¡X2-*-(x, x)JX)}
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The Cauchy-Schwarz inequality implies

£2 ¿ Ki(ES{exp(2Kx/X2-"-2(x,x)/X)})1'2(P(Ji))1'2.

By hypothesis we have P(J2)-¿exp ( — 82/4X2). This inequality and Lemma 2.9 then

give

(4.12) £2 â 2Kt exp (fEJ) exp (-il).

Again using (4.10) and (4.11) we obtain

£3 g K+Eê.4 {exp (-¿ [±(Ax, x) + F(Ax)]}

(4.13)
(-Kx(x,x)al2\        I   (x,x)\\

xexp(      ¿_.'   jexp(-—;)j-

Setting y=Ax we see that  \-(Ax, x) + F(Ax)=i(A~1y, y)+F(y), while xg/3

implies R^\\y-x*\\> 8/2. From Lemma 2.5 we then have

\(Ax,x)+F(Ax) > 6(2-8) > 0,       xg/3\

It follows from Lemma 2.9 that

£3 = K< exp (-1 6(\8)}Ex\exp (-^ (x, x)°>2-\ (x, x))}

(4'l4)    s^exp(-«)8Ip(fe;).

If xg/4\ then ||¿jc||g/c.+ ||**||. Therefore, (4.9) shows that

£4 g #3 exp c3(7?+ ||x*||)£?e,A jexp (A2¡x||2+2c3A(7í+ ||x*||)|x||)

(4.15)

x exp ( -^ [QAx + Xx, x) + F(Ax + Xx)]\\-

By the hypothesis on F, Lemma 2.2(b), (c) and (4.4) we have

\(Ax+ Xx, x) + F(Ax+ Xx) = i(l — cx/px)[(Ax, x) + X(x, x)] - c2 ^ — c2.

Therefore (4.15) shows

£4 g K3 exp (c3(R+ \\x*\\)2) exp (<?2/A2)£*67Î {exp (c3A2||x||2 + 2C3A(7?+ ||x*||)||x|)}

which by the Cauchy-Schwarz inequality is

= K3 exp (c3(7?+ ¡x*||)2) exp (|) [^'{exp (2c3A2||x|2)

x exp (4c3(7î+ M|)l*||)}]"WÏ)]1/a.
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Using the hypothesis on the distribution of the supremum and (4.4) we obtain

F4 g K3 exp (c3(R+ \\x*\\)2) exp (-¿ (Ç-ca))

x [¿'{exp g ||x||2 + 2(rc3)1'2(F+||x*||)||x||)}
11/2

By the assumption on the supremum we see that the right hand side is finite. Letting

F5 = K3 exp (c3(R+ ||x*||))[F<{exp (y/2||x*|2) exp (2(yc3y<\R+ ¡jc*»)!*!)}]«8

we have

(4.16) F4 g F5 exp (- [yF2/2-c2]/A2) ¿ K5 exp (- 1/A2),

by definition of F.

It follows from (4.9) and Lemma 2.2(d) that

EsSEZ», = *«,,{exp (c3A2||x||2 + 2Ac3(^)1,2||x||3'2)

(4.17)

xexp í-¿ [(iAx+Xx,x)+F(Ax+Xx)-X2\\Ax\\2]\\

which by (4.4) and (2.6) is

è exp g§F3)F^5{exp (| N»*^)" |x|")

xexp(-¿K1_a(^,x))}'

If x e /5, then by Lemma 2.2(a) we have

F g Mx-x*|| = \\All2(Axl2x-A-xl2x*)\\

= M1'2^1'^-^"1'^*, A1'ax-ii"1'ax*)1/a

which shows that

(4.18)      (Ax, x)1'2 = (All2x, All2x)lia ^ R/Mll2-(A~ll2x*, A~1,2x*)112.

Since H(x*)=0 and F(x)^ — ̂(x, x) —c2 we see that

0 = H(x*) = ^(A-ll2x*,A-ll2x*)+F(x*) è ¥,Pi-cx)(x*,x*)-c2,

therefore,

(^-1'2x*,^i-1'2x*) = -2F(x*) g Cl(x*,x*)+2c2 ^ 4pxc2/(Px-cx).

Combining this last inequality with (4.17) we obtain

(Ax,x)x>2 = F/M1'2-(4Plc2/(Pl-c1))1/2.
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From (4.18) we then have

xK3Es\exp (| ||x||2+(^)1'2 ||x|3'2)}.

Again by (2.8) the right hand side is finite.

Letting

K6 = K3Ei{exp((y/2)\\x\\2 + (c3yM/px)ll2\\x\\3'2)}

we obtain

£ **M-ifi(i-&MÄnW)
which by definition of 7? gives

(4.19) £5^ Ä-6exp(-l/A2).

Combining (4.7), (4.8), (4.12), (4.14), (4.16) and (4.19) we obtain

(4.20) | = }e.

<4-2i>      § * im«* H ^-^-*>^-°})

(4.22) ^ ^ ^ exp (-¿ {6(Í8)-2V-A«'2*?«2-*})

(4.23) § Z ^ exp (-¿ {1 -2t?-A"2^2"*})

(4-24) £ = PjBj) exp ("Ä{1 -2^-A«'2^2-'})-

From (4.5) we see that by choosing A sufficiently small, the coefficient of - 1/A2

in each of the exponentials (4.20)-(4.24) is strictly positive. This proves the theorem.

5. Applications to Hammerstein integral equations.   Hammerstein equations are

nonlinear integral equations of the form

(5.1) X(<r) + £ p(a, r)f(r, x(r)) dr = 0,

where p(a, r), O^ct, t^í, is a square integrable (in the square 0^a,r^t), sym-

metric, positive definite kernel and/(r, u), 0gr<t, —co<«<co, is a real valued

function.
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In this section we shall demonstrate a close connection between Theorem 4.1

and the theory of these equations. In fact, under certain conditions, Theorem 1

gives a closed form solution of (5.1). From two conditions, found by Hammerstein,

which insure that (5.1) has a unique solution, we are able to give sufficient con-

ditions insuring that the functional H(x) = i(A~ll2x, A~ll2x)+F(x) has a unique

global minimum.

When the kernel is that of Brownian motion (i.e. p(a, r) = min (er, t)), it is possible

to relate the solution of (5.1) to the Green's function of a linear parabolic equation

through the Feynman-Kac formula [9]-[ll].

Unless explicitly stated, we assume that p(o, t),0=o,t¿í, is a continuous,

positive definite, symmetric kernel (covariance function), and that F(x) is a real

valued functional defined on C and continuous in the topology of C.

Whenever it exists, we shall call the derivative of F with respect to x at the point t,

0^ t= t, 8F(x)/8x(t), the Fréchet-Volterra derivative of F at x (see §2).

By a standard variational argument we obtain

Lemma 1. Let H(x)=\(A~ll2x, A~ll2x)+F(x) have a minimum at the point

x*. If F(x) has a Fréchet-Volterra derivative in a neighborhood N of x* then x*

satisfies the nonlinear integral equation

X(a) + £ p(a, t) |^j dT = 0,        xeN.

Lemma 1 immediately implies

Lemma 2. Let p(a, t) and F(x) satisfy the conditions of Theorem 4.1. If, in

addition, F(x) has a Fréchet- Volterra derivative in a neighborhood N ofx*, then

Ei{Xx(a)exp(-F(Xx)IX2)} _

Á™     ££{exp(-F(Ax)/A2)} *w

is a solution of the Hammerstein equation

X(a) + £ p(a, t) ^ dT = 0,        xeN.

Another way of obtaining Lemma 2 without appealing to Lemma 1 is through

the integration by parts formula for Gaussian processes which states that if

G(x) is integrable and if G has a Fréchet-Volterra derivative 8G(x)/8x(t) satisfying

certain conditions [13, p. 920], [14], then

ï°x{x(o)G(x)} = E£ {£ p(a, r) IÜ dry
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We then have, assuming that F has a Fréchet-Volterra derivative for each sample

path x and that the conditions of Theorem 4.1 are satisfied,

r*M - lin, E°{Xx(o)exp(-F(Xx)/X2)}

*W     I™     F?{exp(-F(Ax)/A2)}

I K°' t) £(t) dr exp (_jF(Ax)/A2)

l'T F¿{exp (-F(Ax)/A2)}

8x(r)dT

the last step following from the application of Theorem 4.1 to the functional

SF(x)ft
J  p(°, T) ■

■dr.
Sx(r)

We shall now specialize to functionals of the form

E(X) = £ V(r, x(t)) ¿t

where F(t, u), 0^ t^ í, — oo < m < oo, is a real valued function continuous in u, and

integrable as a function of t for each fixed u.

For functionals of this type we can give conditions directly on V(t, u) that will

ensure that the hypotheses of Theorem 4.1 are satisfied.

If V(t, u)= —\cxu2 — c2, cx < px, then it is easy to see that

(5.2) F(x) = - \cx £ x2(r) dr - c2,       cx< Px.

If for \ux\, \u2\ <2R we have

\V(r, U2)- V(r, UX)\ á K\u2-ux\«,        0 < a ¿ 1,

then for ||x||, ||x+j|| <2F it follows that

|F(X+J)-F(j)| S £ \V(r,x(r) + y(r))-V(r,x(r))\ dr

(5.3)

è F^ \y(r)\"dr S F(£ \y(r)\2dryl2t2<*-°\

Suppose V(r, u) has a derivative, V'(r, u), with respect to u, — oo<w<oo, such

that V'(r, x(r)) e L2 for each x e C. It then follows directly from the definition of

the Fréchet-Volterra derivative that

F(x) = ^V(r,x(r))dr

has a Fréchet-Volterra derivative, 8F(x)/8x(r), given by

8F/8x(r)=V'(r,x(r)),        xeC.
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Lemma 1 then shows that the Euler-Lagrange equation of the functional

77(x) = ¿04-1,2x, A'™x)+J* V(r, x(t)) dr

is the Hammerstein integral equation

(5.4) x(a) + £ p(a, r) V(r, x(r)) dr = 0.

For the remainder of this section we shall assume that V(t, u),0=r^t, — oo

< u < oo is, for each u, an integrable function of t, 0 = t = t, and that for — oo < u < oo,

V(t, u) has a derivative with respect to u, V(t, u), such that V'(t, x(t)) e L2 for

each x g C. These conditions will ensure F(x)=jl V(t, x(t)) <7t is well defined for

each x g C, and that at any point x* at which 77(x) assumes a minimum, x* will

satisfy (5.4).

From two conditions on V'(r, u) which, as Hammerstein has shown, imply that

(5.4) has a unique solution, we shall obtain conditions ensuring that H(x) has a

unique global minimum.

Lemma 3. Assume V(t,u),0=t^í, — oo < u<oo, satisfies

(5.5) V(t, u) sí — \cxu2-c2,       cx < px, -co < u < oo, c2 real.

Let R have the meaning assigned in Theorem 4.1 and let x* denote a point at which

H(x) assumes its global minimum valued).

Suppose V'(t, u) satisfies any one of the following conditions:

(5.6) \V'(t,u2)-V'(t,ux)\ Z Kx\u2-ux\, Kx < Px, \ux\ + \\x*\\ = R, \u2\ + \\x*\\

é R.
(5.6)a   \V'ir, u2)- V'ir, ux)\ = Kx\u2-ux\, Kx < px, -co < ux, u2 < co.

(5.7) V'Ít,ü) is a monotone function ofu, |k| + ||x*|| = R, for each fixed t g [0, FJ.

(5.7)a V'ir, u) is a monotone function of u, — oo < u < oo, for each fixed t g [0, FJ.

It then follows that x* is the only point at which

77(x) = XA-1!2x, A-l>*x)+r V(t, x(t)) dT

assumes its global minimum value in the sphere {x e C: \\x—x*\\ ¿R}.

Under (5.6)a or (5.7)a, x* is the only point at which H(x) assumes a relative

minimum value(5).

Proof. It is shown in [2, pp. 211-212] that under (5.6)a or (5.7)a that (5.4) has a

unique solution. Moreover, from the proofs given in this reference it is not difficult

to see that under (5.6) or (5.7) that (5.4) has only one solution in the sphere

(4) Such a point exists by Lemma 2.4 when V(j, u) satisfies (5.5).

(s) Therefore, H(x*) is a global minimum value of H(x).
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{x e C: |x-x*|| ^F}. The discussion leading to (5.4) then shows that H(x) has a

unique minimum in the sphere (xe C: ||x—x*||gF}.

It may be of some interest to show that (5.7)a implies x* is unique, directly from

the properties of H(x). Without loss of generality we can assume that at any point

x* at which H(x) attains its global minimum, F(x*)=0. Also note that from (5.4)

it follows that x* satisfies

(5.8) (A~xX*)(r)= V'(r,X*(r)).

Thus, using (5.8) and the mean value theorem we obtain for all y e D(A~X)

H(x*+y) = ±(A-x[x*+y],x*+y) + F(x*+y)

(5.9) = \(A~xy, y)+ f [V'(r, x*(r) + Íy(r))- V'(r, X*(r))]y(r) dr,
Jo

0< |= 1.

When V'(r, u) satisfies (5.7)a then

V'(r,X*(r) + $y(r))-V'(r,X*(r))

and y(r) have the same sign. Therefore the integral in (5.9) is strictly positive for

y t¿ 0 and the conclusion follows.

It is not clear to the author how to construct a similar proof using condition

(5.6)a. However, when Kx < px/2 this will follow from Lemma 2.2(b) since (5.6)a

implies

f [V'(r, X*(r) + ty(r))- V'(r, X*(r))]y(r) dr It  -Kx  |V(t) dr.
Jo Jo

The next theorem is an immediate consequence of Lemma 2, (5.2) and (5.3).

Theorem 1. If V(r, u) satisfies (5.5) and V'(r, u) satisfies any one of the con-

ditions (5.6), (5.6)a, (5.7), (5.7)a, then

E£{Xx(o) exp (- 1/A2 j0 V(r, Xx(t)) dr)}

™      F?{exp ( - 1/A2 ¡I V(r, Xx(r)) dr)}

is a solution of the Hammerstein integral equation

X(a) + jt p(cr, r)F'(r, x(r)) dr = 0.

Under (5.6)a or (5.7)a it is the unique solution.

In proving the existence of solutions to (5.4), Hammerstein considered the func-

tionals

(5.10) 2^2+rF(T'2w(T))^
(=1 JO      \      i=l /
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with the assumption V(t, u)^ —\cxu2 — c2. This condition ensured that for each n

there exists a point x*(-) = 2f=i VunUii-) at which (5.10) assumed its global

minimum.

By differentiating (5.10) we see that x* satisfies

X*(o0 + £ pn(a, r)V'(r, x*(t)) dT = 0

where

Pn(°, t) =   2
Ui(o)ulr)

Pi

Hammerstein then showed that the sequence {x*} contained a subsequence {x*¡}

that converged uniformly to a solution of (5.4).

From the point of view taken in this paper, the assumption that V(t, u)=

—\cxu2 — c2 with cx<px, is an integrability condition which allows a solution of

(5.4) to be represented in terms of Gaussian integrals. For functionals of the type

F(x)=JÓ V(r, x(t)) dT this is the appropriate integrability condition since if

C\=P\ then exp (—1¿ V(t, x(t)) dr) would not be integrable.

The sequence {x*} is clearly a Rayleigh-Ritz minimizing sequence of 77(x).

Lemma 2.4 shows that not only this sequence but every minimizing sequence of

77(x) contains a subsequence that converges uniformly to a solution of (5.4). If

there is a unique solution of (5.4) then every minimizing sequence of H converges

uniformly to that solution.

We now specialize the covariance function p(a, t) to the case of Brownian

motion, where pia, T)=min(o-, r), and a closely related covariance function

F(ct, t) where

Tia, t) = ct(1 -r/t),        0 ^ a ^ r = t,

= t(1-<7/í), Oárgaáí.

It is well known [3] that F(cr, t) is the Green's function of the operator on £2

(5.11) A-1 = -d2lda2

where DiA~1)={xeL2: x twice differentiable, (x", x")<oo, x(0)=x(i)=0}.

The connection between Brownian motion and the Gaussian process generated

by F(<t, t) is contained in the formula

(5.12) E?*{G(x) | x(r) = v} = EÏ{Gixi-) + i-)r,/t)}

where if one side exists so does the other and both are equal [12].

Under certain conditions [9]-[ll] on the functions F(t, u) and qir) it can be

shown that
„2/

(5.13)

«6?, U X, q) = eXP^(2f}/20 £rn {exp (-1 £ V(t, x(r)) dr)

X exp (^ J   ?(r)x(r) dr)   x(í) = 7¡j
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is the unique solution of

du     A2 B2u ,  1 ....     ,     , v i       a

¥t = 2 chf + X2 [F(T' ^-i(T)^M = °«

lim u(r¡, t, A, q) = 0,

Um u(r¡, t, A, C) = 8(rj).
É-.0 +

Let us note that

A2 8u/(8q(a))

u

Ef»{Xx(v) exp (- 1/A2 fi V(r, Xx(r)) dr+ 1/A j~¿ q(r)x(r) dr) \ x(t) = r,}

Frn{exP (- 1/A2 j, V(r, Xx(r)) + 1/A JJ ?(t)x(t) ¿r) | x(/) = ,}

(5.14)
_ Fj{(Ax(a) + aVQexp(-l/A2^ F(t, Ax(r) + ^/Q^+l/A jlq(r)x(r) dr)}

F£{exp(-1/A2ft K(r, Ax(t) + ̂ /0¿t+1/A J>M*« ¿t)}

0  á  (7 ¿Í.

Thus, if #(t) and F(t, h) are such that the conditions of Theorem 4.1 are fulfilled,

then (5.14) shows that

hm A2 MMf)) = x*{o) + ar¡lu        0<a<r,
A-0 U

where x* satisfies the Hammerstein integral equation

X(a) +£ T(a, ^'(r, x(r) + j r,} +q(r)] dr = 0,

or x*(o-) + arj/t satisfies the equation

(5.15) x(a) + [ J(CT' t)[F'(t' *(t))+*(t)] dT+J r, = 0-

From (5.11) we see that (5.15) is equivalent to the differential equation

-x"(o)+ V'(o, x(o))+q(o) = 0,       Oí.íí,

X(0) = 0,     x(t) = r,.

We have thus shown that

Theorem 2. If V(r, u) and q(r) satisfy conditions ensuring the validity of the

Feynman-Kac formula (5.13) ([9]-[ll]) and are such that the functional

F(X) = £ [V(r, X(r))-q(r)x(r)] dr
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satisfies the conditions of Theorem 4.1 (see Lemma 3), then

lim^M^       OS***,
A-0 U

is the solution of

-X"(a)+ V'(a, X(a))+q(a) = 0, 0 = a = t,

X(0) = 0,    X(t) = r¡,

where u=u(r¡, t, X, q) is the solution of

du     A2 ô2u    I n/,     ,     ( s x       n
8¡ = ^8r? + Y2(y(-,v)-g(rpi)u = 0,

lim u(v, t, X, q) = 0,    lim u(t¡, t, X, q) = 8(t¡).
rj-.oo Í-.0 +
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