On the set of subsequential limit points of successive approximations.
HTML articles powered by AMS MathViewer
- by J. B. Diaz and F. T. Metcalf
- Trans. Amer. Math. Soc. 135 (1969), 459-485
- DOI: https://doi.org/10.1090/S0002-9947-1969-0234327-0
- PDF | Request permission
References
- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales (Thèse, Université de Léopol [=Lwów], 1920), Fund. Math. 3 (1922), 133-181.
- M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74–79. MR 133102, DOI 10.1112/jlms/s1-37.1.74
- M. Edelstein, A remark on a theorem of M. A. Krasnoselski, Amer. Math. Monthly 73 (1966), 509–510. MR 194866, DOI 10.2307/2315474
- F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566–570. MR 190744, DOI 10.1090/S0002-9904-1966-11543-4
- F. E. Browder and W. V. Petryshyn, The solution by iteration of linear functional equations in Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 566–570. MR 190744, DOI 10.1090/S0002-9904-1966-11543-4 F. Tricomi, Lectures on the use of special functions by calculations with electronic computers, Lecture Series No. 47, Inst. Fluid Dynamics and Appl. Math., Univ. of Maryland, College Park, 1966. —, Un teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Battaglini 54 (1916), 1-9.
- A. M. Ostrowski, Solution of equations and systems of equations, 2nd ed., Pure and Applied Mathematics, Vol. 9, Academic Press, New York-London, 1966. MR 0216746
- M. A. Krasnosel′skiĭ, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.) 10 (1955), no. 1(63), 123–127 (Russian). MR 0068119
- V. M. Fridman, Method of successive approximations for a Fredholm integral equation of the 1st kind, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 1(67), 233–234 (Russian). MR 0076183
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- S. C. Chu and R. D. Moyer, On continuous functions, commuting functions, and fixed points, Fund. Math. 59 (1966), 91–95. MR 200919, DOI 10.4064/fm-59-1-91-95 S. Mazur, Über die kleinste konvexe Menge, die eine gegebene kompakte Menge enthält, Studia Math. 2 (1930), 7-9.
- Felix E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862–874. MR 156116, DOI 10.1090/S0002-9904-1963-11068-X
- George J. Minty, on a “monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038–1041. MR 162159, DOI 10.1073/pnas.50.6.1038
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 135 (1969), 459-485
- MSC: Primary 47.85
- DOI: https://doi.org/10.1090/S0002-9947-1969-0234327-0
- MathSciNet review: 0234327