On the degrees of index sets. II
HTML articles powered by AMS MathViewer
- by C. E. M. Yates
- Trans. Amer. Math. Soc. 135 (1969), 249-266
- DOI: https://doi.org/10.1090/S0002-9947-1969-0241295-4
- PDF | Request permission
References
- Richard M. Friedberg, Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication, J. Symbolic Logic 23 (1958), 309–316. MR 109125, DOI 10.2307/2964290
- Donald A. Martin, Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grundlagen Math. 12 (1966), 295–310. MR 224469, DOI 10.1002/malq.19660120125
- Gerald E. Sacks, Degrees of unsolvability, Princeton University Press, Princeton, N.J., 1963. MR 0186554
- Gerald E. Sacks, The recursively enumerable degrees are dense, Ann. of Math. (2) 80 (1964), 300–312. MR 166089, DOI 10.2307/1970393
- Gerald E. Sacks, A maximal set which is not complete, Michigan Math. J. 11 (1964), 193–205. MR 166090
- Yoshindo Suzuki, Enumeration of recursive sets, J. Symbolic Logic 24 (1959), 311. MR 143700, DOI 10.2307/2963902
- C. E. M. Yates, Three theorems on the degrees of recursively enumerable sets, Duke Math. J. 32 (1965), 461–468. MR 180486
- C. E. M. Yates, On the degrees of index sets, Trans. Amer. Math. Soc. 121 (1966), 309–328. MR 184855, DOI 10.1090/S0002-9947-1966-0184855-9
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 135 (1969), 249-266
- MSC: Primary 02.77
- DOI: https://doi.org/10.1090/S0002-9947-1969-0241295-4
- MathSciNet review: 0241295