Harmonic functions on Hermitian hyperbolic space
HTML articles powered by AMS MathViewer
- by Adam Korányi
- Trans. Amer. Math. Soc. 135 (1969), 507-516
- DOI: https://doi.org/10.1090/S0002-9947-1969-0277747-0
- PDF | Request permission
References
- A. P. Calderón, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 47–54. MR 32863, DOI 10.1090/S0002-9947-1950-0032863-9
- R. E. Edwards and Edwin Hewitt, Pointwise limits for sequences of convolution operators, Acta Math. 113 (1965), 181–218. MR 177259, DOI 10.1007/BF02391777
- Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. MR 146298, DOI 10.2307/1970220
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936, DOI 10.1090/mmono/006
- Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–350. MR 200478, DOI 10.2307/1970645
- H. E. Rauch, Harmonic and analytic functions of several variables and the maximal theorem of Hardy and Littlewood, Canadian J. Math. 8 (1956), 171–183. MR 86888, DOI 10.4153/CJM-1956-020-6
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 135 (1969), 507-516
- MSC: Primary 32.12; Secondary 31.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0277747-0
- MathSciNet review: 0277747