Dependence in rings. II. The dependence number
HTML articles powered by AMS MathViewer
- by P. M. Cohn
- Trans. Amer. Math. Soc. 135 (1969), 267-279
- DOI: https://doi.org/10.1090/S0002-9947-1969-0279122-1
- PDF | Request permission
References
- G. M. Bergman and P. M. Cohn, Dependence in rings I: n-firs, (to appear).
- A. J. Bowtell, On a question of Mal′cev, J. Algebra 7 (1967), 126–139. MR 230750, DOI 10.1016/0021-8693(67)90071-3
- P. M. Cohn, On a generalization of the Euclidean algorithm, Proc. Cambridge Philos. Soc. 57 (1961), 18–30. MR 118743, DOI 10.1017/s0305004100034812
- P. M. Cohn, Factorization in non-commutative power series rings, Proc. Cambridge Philos. Soc. 58 (1962), 452–464. MR 138649, DOI 10.1017/s0305004100036720
- P. M. Cohn, Rings with a weak algorithm, Trans. Amer. Math. Soc. 109 (1963), 332–356. MR 153696, DOI 10.1090/S0002-9947-1963-0153696-8
- P. M. Cohn, Free ideal rings, J. Algebra 1 (1964), 47–69. MR 161891, DOI 10.1016/0021-8693(64)90007-9
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948 —, On the structure of the $\mathrm {GL}_2$ of a ring, Publ. Math. Inst. Hautes Etudes Sci., No. 30, Paris, 1966, pp. 5-53.
- P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215–228. MR 197511, DOI 10.1016/0040-9383(66)90006-1
- P. M. Cohn, Torsion modules over free ideal rings, Proc. London Math. Soc. (3) 17 (1967), 577–599. MR 222112, DOI 10.1112/plms/s3-17.4.577
- Abraham A. Klein, Rings nonembeddable in fields with multiplicative semi-groups embeddable in groups, J. Algebra 7 (1967), 100–125. MR 230749, DOI 10.1016/0021-8693(67)90070-1
- W. G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 103 (1962), 113–130. MR 132764, DOI 10.1090/S0002-9947-1962-0132764-X
- Michèle Raynaud, Solution d’un problème universal relatif aux modules projectifs de type fini, C. R. Acad. Sci. Paris 260 (1965), 4391–4394. MR 178027
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 135 (1969), 267-279
- MSC: Primary 16.10
- DOI: https://doi.org/10.1090/S0002-9947-1969-0279122-1
- MathSciNet review: 0279122