Convergence of Poisson integrals on generalized upper half-planes
HTML articles powered by AMS MathViewer
- by Norman J. Weiss
- Trans. Amer. Math. Soc. 136 (1969), 109-123
- DOI: https://doi.org/10.1090/S0002-9947-1969-0234014-9
- PDF | Request permission
References
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- A. W. Knapp, Fatou’s theorem for symmetric spaces. I, Ann. of Math. (2) 88 (1968), 106–127. MR 225938, DOI 10.2307/1970557
- Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–350. MR 200478, DOI 10.2307/1970645
- S. Helgason and A. Korányi, A Fatou-type theorem for harmonic functions on symmetric spaces, Bull. Amer. Math. Soc. 74 (1968), 258–263. MR 229179, DOI 10.1090/S0002-9904-1968-11912-3 A. Korányi and E. M. Stein, Fatou’s theorem for generalized halfplanes, C.I.M.E. summer course on bounded homogeneous domains, Cremonese, 1967.
- Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265–288. MR 174787, DOI 10.2307/1970616
- E. M. Stein, Note on the boundary values of holomorphic functions, Ann. of Math. (2) 82 (1965), 351–353. MR 188485, DOI 10.2307/1970646
- Norman J. Weiss, Almost everywhere convergence of Poisson integrals on tube domains over cones, Trans. Amer. Math. Soc. 129 (1967), 283–307. MR 222330, DOI 10.1090/S0002-9947-1967-0222330-4 —, Almost everywhere convergence of Poisson integrals on tube domains over cones, Thesis, Princeton Univ., Princeton, N. J., 1966.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776 E. M. Stein, Maximal functions and Fatou’s theorem, C.I.M.E. summer course on bounded homogeneous domains, Cremonese, 1967.
- E. M. Stein and N. J. Weiss, Convergence of Poisson integrals for bounded symmetric domains, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1160–1162. MR 229856, DOI 10.1073/pnas.60.4.1160
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 136 (1969), 109-123
- MSC: Primary 32.15
- DOI: https://doi.org/10.1090/S0002-9947-1969-0234014-9
- MathSciNet review: 0234014