Centralizers in free associative algebras
Author:
George M. Bergman
Journal:
Trans. Amer. Math. Soc. 137 (1969), 327-344
MSC:
Primary 16.10
DOI:
https://doi.org/10.1090/S0002-9947-1969-0236208-5
MathSciNet review:
0236208
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] S. A. Amitsur, Commutative linear differential operators, Pacific J. Math. 8 (1958), 1–10. MR 95305
- [2] Garrett Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, revised edition, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- [3] N. Bourbaki, Eléments de mathématique. Fasc. XXVI: Groupes et algèbres de Lie, Chapitre 1, Algèbres de Lie, Hermann, Paris, 1960.
- [4] P. M. Cohn, On subsemigroups of free semigroups, Proc. Amer. Math. Soc. 13 (1962), 347–351. MR 139680, https://doi.org/10.1090/S0002-9939-1962-0139680-3
- [5] P. M. Cohn, On a generalization of the Euclidean algorithm, Proc. Cambridge Philos. Soc. 57 (1961), 18–30. MR 118743, https://doi.org/10.1017/s0305004100034812
- [6] P. M. Cohn, Factorization in non-commutative power series rings, Proc. Cambridge Philos. Soc. 58 (1962), 452–464. MR 138649, https://doi.org/10.1017/s0305004100036720
- [7] P. M. Cohn, Noncommutative unique factorization domains, Trans. Amer. Math. Soc. 109 (1963), 313–331. MR 155851, https://doi.org/10.1090/S0002-9947-1963-0155851-X
- [8] P. M. Cohn, Rings with a weak algorithm, Trans. Amer. Math. Soc. 109 (1963), 332–356. MR 153696, https://doi.org/10.1090/S0002-9947-1963-0153696-8
- [9] P. M. Cohn, Subalgebras of free associative algebras, Proc. London Math. Soc. (3) 14 (1964), 618–632. MR 0167504, https://doi.org/10.1112/plms/s3-14.4.618
- [10] P. M. Cohn, Free ideal rings, J. Algebra 1 (1964), 47–69. MR 161891, https://doi.org/10.1016/0021-8693(64)90007-9
- [11] P. M. Cohn, Some remarks on the invariant basis property, Topology 5 (1966), 215–228. MR 197511, https://doi.org/10.1016/0040-9383(66)90006-1
- [12] P. M. Cohn and G. M. Bergman, Dependence in rings. I: n-firs, (to appear).
- [13] P. M. Cohn, Dependence in rings. II. The dependence number, Trans. Amer. Math. Soc. 135 (1969), 267–279. MR 279122, https://doi.org/10.1090/S0002-9947-1969-0279122-1
- [14] H. Flanders, Commuting linear differential operators, Tech. Rep. No. 1, Univ of California, Berkeley, 1955, 39 pp.
- [15] B. V. Tarasov, O svobodnyh associativnyh algebrah, Algebra i Logika Sem. 6 (1967), 93-105.
- [16] Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
- [17] George M. Bergman, Ranks of tensors and change of base field, J. Algebra 11 (1969), 613–621. MR 242850, https://doi.org/10.1016/0021-8693(69)90094-5
Retrieve articles in Transactions of the American Mathematical Society with MSC: 16.10
Retrieve articles in all journals with MSC: 16.10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1969-0236208-5
Article copyright:
© Copyright 1969
American Mathematical Society