On topological equivalence of $\aleph _{0}$-dimensional linear spaces
HTML articles powered by AMS MathViewer
- by Raymond Y. T. Wong
- Trans. Amer. Math. Soc. 137 (1969), 551-560
- DOI: https://doi.org/10.1090/S0002-9947-1969-0236656-3
- PDF | Request permission
References
- C. Bessaga, Some remarks on homeomorphisms of $\aleph _{0}$-dimensional linear metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 159–163. MR 151828
- Harry Corson and Victor Klee, Topological classification of convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 37–51. MR 0161119 M. Fréchet, Espaces abstraits, Gauthier-Villars, Paris, 1928.
- Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43. MR 54850, DOI 10.1090/S0002-9947-1953-0054850-X
- V. L. Klee Jr., A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673–674. MR 78661, DOI 10.1090/S0002-9939-1956-0078661-2
- V. L. Klee Jr. and R. G. Long, On a method of mapping due to Kadeč and Bernstein, Arch. Math. 8 (1957), 280–285. MR 100771, DOI 10.1007/BF01898789 A. Pełczynski, Some open problems in “infinite dimensional topology", Manuscript, 1966.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 137 (1969), 551-560
- MSC: Primary 46.01; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0236656-3
- MathSciNet review: 0236656