The $C^{\ast }$-algebra generated by an isometry. II
HTML articles powered by AMS MathViewer
- by L. A. Coburn
- Trans. Amer. Math. Soc. 137 (1969), 211-217
- DOI: https://doi.org/10.1090/S0002-9947-1969-0236720-9
- PDF | Request permission
References
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89â102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722â726. MR 213906, DOI 10.1090/S0002-9904-1967-11845-7
- L. A. Coburn, Weylâs theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285â288. MR 201969, DOI 10.1307/mmj/1031732778
- Jacques Dixmier, Les $C^{\ast }$-algĂšbres et leurs reprĂ©sentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Ăditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- I. C. Gohberg and M. G. KreÄn, The basic propositions on defect numbers, root numbers and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185â264. MR 0113146, DOI 10.1090/trans2/013/08
- M. A. NaÄmark, Normed rings, Reprinting of the revised English edition, Wolters-Noordhoff Publishing, Groningen, 1970. Translated from the first Russian edition by Leo F. Boron. MR 0355601
- Eric A. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175â181. MR 216321
- Harold Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365â375. MR 163173, DOI 10.2140/pjm.1964.14.365
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 137 (1969), 211-217
- MSC: Primary 46.65; Secondary 47.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0236720-9
- MathSciNet review: 0236720