Triangulations of the $3$-ball with knotted spanning $1$-simplexes and collapsible $r$th derived subdivisions
HTML articles powered by AMS MathViewer
- by W. B. R. Lickorish and J. M. Martin
- Trans. Amer. Math. Soc. 137 (1969), 451-458
- DOI: https://doi.org/10.1090/S0002-9947-1969-0238288-X
- PDF | Request permission
References
- R. H. Bing, Some aspects of the topology of $3$-manifolds related to the Poincaré conjecture, Lectures on Modern Mathematics, Vol. II, Wiley, New York, 1964, pp. 93–128. MR 0172254
- D. R. J. Chillingworth, Collapsing three-dimensional convex polyhedra, Proc. Cambridge Philos. Soc. 63 (1967), 353–357. MR 210100, DOI 10.1017/s0305004100041268
- Richard E. Goodrick, Non-simplicially collapsible triangulations of $I^{n}$, Proc. Cambridge Philos. Soc. 64 (1968), 31–36. MR 220272, DOI 10.1017/s0305004100042511
- Mary-Elizabeth Hamstrom and R. P. Jerrard, Collapsing a triangulation of a “knotted” cell, Proc. Amer. Math. Soc. 21 (1969), 327–331. MR 243510, DOI 10.1090/S0002-9939-1969-0243510-5
- Horst Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954), 245–288 (German). MR 72483, DOI 10.1007/BF01181346
- E. C. Zeeman, The topology of Minkowski space, Topology 6 (1966), 161–170. MR 206883, DOI 10.1016/0040-9383(67)90033-X
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 137 (1969), 451-458
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1969-0238288-X
- MathSciNet review: 0238288