On algebraic extensions and order-preserving isomorphisms of certain partially ordered fields
HTML articles powered by AMS MathViewer
- by Robert K. Wright
- Trans. Amer. Math. Soc. 137 (1969), 101-114
- DOI: https://doi.org/10.1090/S0002-9947-1969-0238818-8
- PDF | Request permission
References
- Steven Bank, On the instability theory of differential polynomials, Ann. Mat. Pura Appl. (4) 74 (1966), 83–111. MR 204785, DOI 10.1007/BF02416451
- N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1308, Hermann, Paris, 1964 (French). MR 0194450
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Walter Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc. 13 (1954), 81. MR 67290
- Walter Strodt, On the algebraic closure of certain partially ordered fields, Trans. Amer. Math. Soc. 105 (1962), 229–250. MR 140514, DOI 10.1090/S0002-9947-1962-0140514-6 —, On the Briot and Bouquet theory of singular points of ordinary differential equations, Univ. of Wisconsin U. S. Army MRC Tech. Summary Rep. No. 508, September, 1964.
- Walter Strodt, Principal solutions of nonlinear differential equations, Proc. U.S.-Japan Seminar on Differential and Functional Equations (Minneapolis, Minn., 1967) Benjamin, New York, 1967, pp. 347–366. MR 0222386 R. Wright, On quasi-logarithmic coefficient and solution fields for first order algebraic differential equations, Ph.D. Thesis, Columbia Univ., New York, 1966.
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 137 (1969), 101-114
- MSC: Primary 12.70
- DOI: https://doi.org/10.1090/S0002-9947-1969-0238818-8
- MathSciNet review: 0238818