Functional analytic properties of extremely amenable semigroups
HTML articles powered by AMS MathViewer
- by Edmond E. Granirer
- Trans. Amer. Math. Soc. 137 (1969), 53-75
- DOI: https://doi.org/10.1090/S0002-9947-1969-0239408-3
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 177 (1973), 507.
References
- F. F. Bonsall, J. Lindenstrauss, and R. R. Phelps, Extreme positive operators on algebras of functions, Math. Scand. 18 (1966), 161–182. MR 209863, DOI 10.7146/math.scand.a-10789
- Mahlon M. Day, Normed linear spaces, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675
- Mahlon M. Day, Means for the bounded functions and ergodicity of the bounded representations of semi-groups, Trans. Amer. Math. Soc. 69 (1950), 276–291. MR 44031, DOI 10.1090/S0002-9947-1950-0044031-5
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Mahlon M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585–590. MR 138100
- Jacques Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math. (Szeged) 12 (1950), 213–227 (French). MR 37470 N. Dunford and J. Schwartz (with the assistance of W. G. Bade and R. G. Bartle), Linear operators. I, Interscience, New York, 1958.
- Erling Følner, Generalization of a theorem of Bogolioùboff to topological abelian groups. With an appendix on Banach mean values in non-abelian groups, Math. Scand. 2 (1954), 5–18. MR 64062, DOI 10.7146/math.scand.a-10389
- Erling Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243–254. MR 79220, DOI 10.7146/math.scand.a-10442
- Erling Følner, Note on groups with and without full Banach mean value, Math. Scand. 5 (1957), 5–11. MR 94725, DOI 10.7146/math.scand.a-10482 A. H. Frey, Jr., Studies in amenable semigroups, Thesis, Univ. of Washington, Seattle, 1960.
- I. Gelfand, D. Raikov, and G. Shilov, Commutative normed rings, Chelsea Publishing Co., New York, 1964. Translated from the Russian, with a supplementary chapter. MR 0205105
- E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32–48. MR 144197
- Edmond Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367–379. MR 166597, DOI 10.1090/S0002-9947-1964-0166597-7
- E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177–197. MR 197595, DOI 10.7146/math.scand.a-10772
- E. Granirer, Extremely amenable semigroups. II, Math. Scand. 20 (1967), 93–113. MR 212551, DOI 10.7146/math.scand.a-10825
- E. E. Granirer, On the range of an invariant mean, Trans. Amer. Math. Soc. 125 (1966), 384–394. MR 204551, DOI 10.1090/S0002-9947-1966-0204551-9 E. Hewitt and K. Ross, Abstract harmonic analysis. I, Springer, Berlin, 1963.
- E. S. Ljapin, Semigroups, Translations of Mathematical Monographs, Vol. 3, American Mathematical Society, Providence, R.I., 1963. MR 0167545, DOI 10.1090/mmono/003
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Theodore Mitchell, Constant functions and left invariant means on semigroups, Trans. Amer. Math. Soc. 119 (1965), 244–261. MR 193523, DOI 10.1090/S0002-9947-1965-0193523-8
- Theodore Mitchell, Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc. 122 (1966), 195–202. MR 190249, DOI 10.1090/S0002-9947-1966-0190249-2
- I. Namioka, Følner’s conditions for amenable semi-groups, Math. Scand. 15 (1964), 18–28. MR 180832, DOI 10.7146/math.scand.a-10723
- R. J. Silverman, Invariant means and cones with vector interiors, Trans. Amer. Math. Soc. 88 (1958), 75–79. MR 95414, DOI 10.1090/S0002-9947-1958-0095414-6 J. Sorenson, Existence of measures that are invariant under a semigroup of transformations, Thesis, Purdue Univ., Lafayette, Ind., 1966.
- Carroll Wilde and Klaus Witz, Invariant means and the Stone-Čech compactification, Pacific J. Math. 21 (1967), 577–586. MR 212552, DOI 10.2140/pjm.1967.21.577
- Klaus G. Witz, Applications of a compactification for bounded operator semigroups, Illinois J. Math. 8 (1964), 685–696. MR 178368
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- E. Kamke, Theory of Sets. Translated by Frederick Bagemihl, Dover Publications, Inc., New York, N.Y., 1950. MR 0032709
- I. Glicksberg, On convex hulls of translates, Pacific J. Math. 13 (1963), 97–113. MR 151860, DOI 10.2140/pjm.1963.13.97
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 137 (1969), 53-75
- MSC: Primary 46.25; Secondary 20.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0239408-3
- MathSciNet review: 0239408