Extreme invariant positive operators
HTML articles powered by AMS MathViewer
- by George Converse, Isaac Namioka and R. R. Phelps
- Trans. Amer. Math. Soc. 137 (1969), 375-385
- DOI: https://doi.org/10.1090/S0002-9947-1969-0243370-7
- PDF | Request permission
References
- F. F. Bonsall, J. Lindenstrauss, and R. R. Phelps, Extreme positive operators on algebras of functions, Math. Scand. 18 (1966), 161–182. MR 209863, DOI 10.7146/math.scand.a-10789
- George Arthur Converse, Extreme positive operators on $C(X)$ which commute with given operators, Trans. Amer. Math. Soc. 138 (1969), 149–158. MR 243371, DOI 10.1090/S0002-9947-1969-0243371-9
- Mahlon M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585–590. MR 138100
- E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32–48. MR 144197
- E. Granirer, Extremely amenable semigroups, Math. Scand. 17 (1965), 177–197. MR 197595, DOI 10.7146/math.scand.a-10772
- E. Granirer, Extremely amenable semigroups. II, Math. Scand. 20 (1967), 93–113. MR 212551, DOI 10.7146/math.scand.a-10825
- E. Granirer, Extremely amenable semigroups. II, Math. Scand. 20 (1967), 93–113. MR 212551, DOI 10.7146/math.scand.a-10825
- S. P. Lloyd, A mixing condition for extreme left invariant means, Trans. Amer. Math. Soc. 125 (1966), 461–481. MR 209812, DOI 10.1090/S0002-9947-1966-0209812-5
- I. Namioka, On certain actions of semi-groups on $L$-spaces, Studia Math. 29 (1967), 63–77. MR 223863, DOI 10.4064/sm-29-1-63-77
- R. R. Phelps, Extreme positive operators and homomorphisms, Trans. Amer. Math. Soc. 108 (1963), 265–274. MR 156224, DOI 10.1090/S0002-9947-1963-0156224-6 —, Lectures on Choquet’s Theorem, Van Nostrand, Princeton, N. J., 1966.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 137 (1969), 375-385
- MSC: Primary 47.25
- DOI: https://doi.org/10.1090/S0002-9947-1969-0243370-7
- MathSciNet review: 0243370