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Suppose <£■ is a group and M is a module over the integral group ring of $. Then

the homology groups, H^M), are also O-modules. The usual method of seeing

this is to use the standard resolution, S„, of Z for M because the summands, S¡,

are O-modules themselves, and the boundary map is a <D-homomorphism. How-

ever, this complex is a very cumbersome one, and one would like to see if the

action of <t on H*(M) can be obtained from an arbitrary resolution.

Let £>* be any resolution of Z for M. The obvious question to ask is whether one

can make D, into a <P-module in any natural way. One of the results of this paper is

to show that this can not be done in general. It is the obstructions to this which

give rise to the characteristic classes of the title.

The first section develops the notion of a ^-system for £>* which is an approxima-

tion to an action of <P on D¡. One part of a O-system is, for each / and a e <P, a

Z-homomorphism A^o): D¡ -*■ D¡ which is a chain map and satisfies an appropriate

semilinearity condition. The point is that At(a) ° Aí(t)^A¡(ot) in general. It is

easily seen, however, that they are chain homotopic, and it is such a chain homo-

topy Ufa, t) between Afa) ° A¡(t) and AXot) which is the other part of a <P-system

and measures the obstruction to the existence of an action of O on Z)¡.

If the complex D* is reasonable, these obstructions can be described as follows:

For each a, r e <P, í/¡(<7, r) e Horn (£>¡, Di+X) defines an element in

Hom(/7f(M),//i+i(M))

which is H'(M, Hi + X(M)) if the final (unwritten) coefficients are nice enough. This

can be thought of as defining a nonhomogeneous 2-cochain aii + 1 for <P with

coefficients in H\M, Hi + X(M)), coi + 1 turns out to be a cocycle and its cohomology

class

vi + 1(M) e /F2((P, H\M, Hi+X(M)))

is what we call the /th characteristic class of M. v'(M) depends only on <P, M, and

the action of <D on M.

These algebraic characteristic classes satisfy a naturality condition similar to the

one satisfied by topological (e.g. Stiefel-Whitney) ones, and if M is Z-free, there is

an analogue to the Whitney sum theorem.
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Although the original approach to characteristic classes in topology was via

obstructions, another method is to use the spectral sequence of a fibration. The

algebraic characteristic classes admit a similar interpretation. In §3 we show that if

Erp'q is the Hochschild-Serre spectral sequence for the split extension of M by $,

then the map dP-q is simply obtained by forming the cup product with the class

vr(M). In [3] we have shown that d2 for an arbitrary extension can be computed by

adding the cohomology class of the extension to vp(M), and then taking cup

products.

A good part of the paper is devoted to computing characteristic classes in

particular cases. We exhibit some cases for which these classes are nonzero,

including cases in which M is Z-free.

Our main general theorems are that if M is Z-free, then 2v'(M) = 0 and if

v2(M) = 0, then v\M) = 0 for all i.

In later papers we hope to examine the case where M is finite and to investigate

higher order characteristic classes.

Part I. The General Case

1. Our starting point is a pair of groups O and M and a homomorphism

</>: <1> -> the group of automorphisms of M. For notational convenience, as is

customary, we will suppress xj>, denoting </>(o)(m) by the simpler <t«7.

Let F denote the group ring, Z[M], of M. Let (D*, d*) be a projective resolution

of the trivial AFmodule Z.

-> Dn-> Fn_!->-> D0->Z-> 0

Recall that if F is an F-module, then Hn(\\omR (F+, F)) is denoted by Hn(M, R).

Definition. A ^-system for (£>*, d*) consists of two sequences of functions as

follows :

/ln:cp-^Homz(Fn, A.)   and    Un: <Px 0 -> Homz (Dn, Fn+1)

subject to the conditions listed below:

(i)  dnAn(o) = An-i(a)dn,    R21,

(ii) eA0(a) = e,

(iii) "An(o) is a-linear", i.e.

An(a)(rd) = a(r)An(a)(d)   for de Dn and r e F = Z[M],

(¡') dn + iUn(o, t)+ Un+X(a, r) dn = An(ar)-An(a) o An(r),    näl,

(ii') 8xU0(a, r) = A0(ar)-A0(a) o AQ(r),

(iii') Un(a, t) is ar-linear.

Remarks. 1. An is not a homomorphism, i.e. An(aT)?iAn(o) + An(T).

2. Intuitively we would like to think of An as defining an action of i> on F+. This

is not what happens in general, i.e. AAot) / An(o) o An(r).
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3. The homomorphisms An(a) e Homz (Dn, Dn) are Z-homomorphisms and not

/Miomomorphisms. Rather they satisfy the semilinear condition (iii). Similarly for

un.

Example 1. Let (S1*, d*) be the standard resolution, i.e. 5n = the free abelian

group generated by the set Mx ■ ■ ■ x M («+1 times). Then a <I>-system cc«n be

defined by the equations

An(o)(m0, ...,mn) = (cr(m0),..., cr(mn)).

In this case, of course, An(ar) = An(a)An(T) so we can take Un = 0. We should

remark that in many cases the i/„'s are more significant than the An's. One can

think of the Un's as representing the obstruction to finding an action of® on D*.

Note that if D°n denotes Dn with a new R module structure given by m° xn

= o(m)xn, then An(a) e HomR (Dn, D"n). This observation reduces the proof of

the following proposition to the standard ones.

Proposition 1. (^-systems exist for any such (F>*, 8,).

Example 2. Let Zr act on Zs by o ■ t = t" where qr = 1 modulo s. Here a and / are

generators of multiplicative groups Zr and Zs of orders r and s respectively.

Let A=l-i e R=Z[ZS], N=l + t+ ■■■ -ht3'1 e R, and a= 1 + /+ • • • -M«"1 e R.

Then it is well known that there is a resolution of Z as follows:

dx                e
-► F>i-► D0-► Z-y 0

where D¡ = R, e(t)=l, a2k+1(l)=A and d2k(l) = N. It is trivial to verify that An(o)

may be chosen such that

A2k(o)(l) = ak, A2k+x(o)(X) = ak + \

Define An(ol) = /-fold iteration of An(o) for 0Si<r. It is convenient to letp=qr~1/s.

Lemma. Let Un e Homs (Dn, Dn+ x) be defined by

U2k = 0

U2,+ i(l) = (JJ-s-~eR.

Then dn+xUn+ £/»_, dn = An(o)r - identity («^ 1) and 8XU0 = 0.

Proof. This reduces to establishing

(-^^-iV=(^2fc(a)-id)(l).

NOW A2k(o)2(l) = A2k(a)(ak) = A2k(a)(ak-l) = a(ak)A2k(cT)(l) = a(ak)ak,  etc.  Thus

(A2k(a)r — id)(l) = {(7r"1(a). ■ ■ a(a)a}k — 1 ; thus we must show that

ßk-l =((q')k-l-N)/s,
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where ß = or'1(a)- ■ o(a)a e R. But c1ß = dxAl(o)r(l) = A0(oydx(\) = cx(\), i.e.

A/3=A. So A/3fc = A. Thus A(ßk-\) = 0, or ßk-I eKer dx = Im 82 = {nN \ n eZ}.

But then ßk—l=nkN for some integer nk. Applying the ring homomorphism

e: /!->Zwe conclude that

e(ßf-e(l) = nke(N)    or   (q')k - 1 = nk ■ s.

This completes the proof of the lemma.

It is easy now to see how to choose Un(o\ a'). In fact we may choose

Un(o\o') = 0 if i+j<r

= An(oi + i)oUn(l)   if i+j^r.

Returning to the general theory we suppose that F is both an M-module and a

(p-module such that

ct(«j • y) = o(m) ■ o(y)       Va e <J>, «j e M and y e F.

Then we can extend A* to HomR (F+, F) by (An(o)f)(xn) = o(f(An(<j-1)xn)).

The following is readily verified.

Proposition 2. The above map induces an action o/O on Hn(M; F). This action

is independent of the ^-system and of the particular resolution (D*, d%).

Of course there is entirely analogously an action of d> on Hn(M, F) (i.e. on the

homology of F* <g>B F). We will denote by ct+(x) this action of ct on x £ Hn(M, F).

This action is usually defined via the complex (S*, 3*) of Example 1 (see e.g.

[4]).

2. Characteristic classes. Let k be a principal ideal domain on which M acts

trivially and assume further that Hn(M, k) is /c-projective. (It seems likely that this

assumption is unduly restrictive but it is convenient.) Thus from the universal

coefficient sequence we know that Hn(M, A)~Homk (Hn(M, k), A) where A is a

/c-module on which M acts trivially.

We remark that these assumptions are automatically satisfied in two important

cases :

(a) k is a field,

(b) M is a finitely generated free abelian group and k=Z.

We will omit specific references to k in much of what follows.

Let/" e Homfi (Fn, Hn(M, k)) be a cocycle representing the cohomology class

corresponding to the identity map in Homk (Hn(M, k),Hn(M, k)). It is clear that

An(o)-fn represents the same cohomology class, so for each o- e i>, there is some

F?"1 g HomÄ (/)„_!, i/„(iW)), such that An(o)-fn-fn = Fr18n. Define un(a, r)

eHomB(Dn-x,Hn(M))by

(2)       W(o, r) = An_x(o)-Fr1-FSz-1 + Fr1 + (o, rW»t/-n_i(T-\ O].
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Lemma. u"(o, t)   is  a   cocycle   and  hence   defines  an   element   con(o, t),   of

H»'\M,Hn(M,k)).

Proof.

8-xu\a,T) = u\o,T)dn

= o*-Fr1An_x(o-í)dn + Fíz-í8n + Fr1°dn

+ (oT)i¡f\-dnUn(T-\o-i)-An(T-i)An(o-í) + An(T-io-i))

= o*(An(T)fi"-fi«)An(cr-i)-F?z-i dn + Frl dn

+ {- (°T)*f*An(T ' >)An(o -*) + An(or) •/"}

= °*T*f*An(T - ')An(o - ») - A „(a) ■/" - {A n(ar) /" -/»}

+ {An(o) /"-/"} + {- («7t),/Mb(t - ^n(a "!) + 4(ar) ■/»}

= 0.

Theorem 1. The function wn: 0> x <P -> Hn~ \M, Hn(M,k)) is a ^-cocycle and

represents therefore an element vn e //2(<D, Hn ~ X(M, Hn(M, k))).

Proof.  (8con)(o, T, p) = An(a)acon(T, P)-con(oT, P) + con(a, rP)-wn(a, t). We Work

of course with a representative cocycle. Such a one is obtained by replacing co by u.

After expanding and cancelling many pairs of terms we obtain the expression

crTFr1^-^-1)^-^-1)-^-^-1^1))

+ OTPfi"(Un_x(p-\ T-i)An_x(o-i)-U^x(p-\ r-V-1)

+ t/n-xG^T-1, a-^-aT/^C/^iir-1, a"1)).

Using property (i') of O-systems the first term becomes

- arFr HSn C/n - i(r - \ a - !) + f7n _ 2(r - \ a - !) ¿)n _ i)

= -ctt^/M^-1)-/"}^-!^-1, a'^ + a coboundary.

Thus except for a coboundary the whole expression becomes, except for sign,

+ arp/»{/ln(p-1)c/-n_i(T-\ a"1)- U.-xip'1, r'^A^^a'1)

+ L/n_1(/5-1,r-1«T-1)-i/n_i(/>-1T-1,(T-1)}.

If we rewrite this as aTPcon'1(a, rP), a direct computation shows that

en, m*-1+wn'a dn_x = 0   and    Sjco0 = 0.

Since />* is a projective resolution it follows that for some (<jtP)"Minear functions

BneWom(Dn, Dn+2)wehavedn + 2Bn + Bn_x dn = con and dzB0 = oj°. Taking account

of the fact that/" is a cocycle, this shows that the whole expression is a coboundary

and thus (8a>n)(o, t, P)=0e Hn'x(M, Hn(M, k)) which was to be proved.

Theorem 2. The cohomology class of u>n depends only on the homomorphism

</>: O -> Aut (M). More particularly, it is independent of the choice offn, Fa'1, the

Q-system and the particular resolution D*.
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We omit the proof since it is even more tedious than the previous ones, and no

more difficult. We suggest however that the effect of the various choices be

considered one-by-one.

Definition. The cohomology class of con in //2(<I>, //n_1(M, Hn(M, k))) is called

the nth characteristic class. It is denoted vn(M) or sometimes simply vn.

Naturality. Let «: O' -> <t> be any homomorphism. Then O' acts on M via « and

the action of Q> on M. For notational convenience we denote by M', M with this

action of <D'. Thus vn(M') e F2(<D', Hn-\M', Hn(M', k))) are defined. It is trivial to

see that « induces a homomorphism.

«*: H2(<t>, Hn~\M, Hn(M))) -* //2(<P', Hn'x(M', Hn(M')))

and to prove the following proposition.

Theorem 3 (Naturality). h*(vn(M)) = vn(M').

Example 2 (Continued). We choose k=Zs. Thus Dn <g>B ZS = R (g>fl ZS~ZS and

dn <g> 1=0. Thus Hn(Zs,Zs)^Dn <g>s ZssZs for n^l. It is clear that yn=l ® 1

eZn <g)Zs is a generator and that oif(y2k) = A2k(cr)(l) (gi 1=0^ (g> ̂ a*-1 ®a

= •■■=1 ®a'c=ofcl (g) l=aky2fc- Similarly o*(y2k+x)=qk + 1y2k+x. Now /n e

HomB (Dn, Hn) is characterized by fn(l)=yn. By definition ^<2jc(o'"1)-/2'c = cr»1

°/2,c o A2k(a) and so its value on 1 is tr^f^a"■ l) = a^1(qk-y2k)=y2k; i.e. A^a'1)

.fsk^f» similarly An(ot)-fn=fn so F?"x=0 is legitimate. Thus »V, *0*=

-»»+f "fi-ii»"'.»"'). Thus we conclude that 7;2fc + 1=0 (since t/2Jc = 0). To

compute further however we must determine the O-module structure of

Hn~1(M, Hn(M)) = Hom (Hn-X, Hn) in this case. It is easy from the above to see

that for even n, a acts trivially while for odd n, ct* is multiplication by q. The next

task is to describe //2(<J>, Hk~1(M, Hn(M))). Since 4> is cyclic in this case we may

make use of the fact that /72(0, A) = A"'/zl-A, i.e. the quotient of the fixed elements

by the image of zZ where 2= 1+ct + ct2+ • - - +<Tr""1. If tuí) x O -+ A is a two-

cocycle representing an element {cu} e //2(<J>, A) then it is readily verified that

2¡I¿ oj(o\ a) e A* and represents the corresponding class in A^/ZA. Our attention

is therefore focused on

aTk— 1
„r   f2krr _  f2kri — 1_1   f2k
CT*7     XJ2k-l  —J     u2k-l  — -"-J     ■

Putting everything together

v2k e //2(4>, H2k~\M, H2k(M)))=ZJr-Zs

and corresponds to — (qrk — l)/s. Now it is easy to see that if (qr—l)/s=p then

(qrk- l)/s=k-p mod s.

Summarizing. If Zr acts on Zs by o(t) = t" where q'—l=ps then v2k + i = 0 and

j,2k e A2(-Zr; H2k-irzsi H2k(Zs)))~ZJrZs corresponds to -kp.

In the special case r = 2, i = 8, q = 5 we conclude that 7;4m + 2/0 for any «j while

all others are zero.
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We remark that this shows that one cannot find a «5-system A'n for the complex of

the example satisfying Än(oT) = A'n(o) ° A'n(r). For then U'n^x=0 would be

permissible and then v" = 0 would be a consequence.

3. The second differential. Let G = the semidirect product of M and <I>. Thus M

is a normal subgroup of G with quotient <1>. Indeed we can represent each element,

g, of G uniquely as a pair (m, <j) e A/ x d>. The multiplication in G is then

(nti, oî)(m2, °2) = (mx + ox(m2), axo2).

Hochschild and Serre have shown in [4], that if B is some appropriate coefficient

group, there is a spectral sequence

Ef'Hfl) => H\G; B),

where E^"(B) = HP(Q>, H"(M, B)).

In [2] and [3], the present authors found an interpretation of the second differ-

ential in this spectral sequence (actually the emphasis there is the comparison of

this spectral sequence with those of other extensions of <)> by M). We wish to recall

that proposition and to relate the characteristic classes with the differential.

First fix an integer «. The universal coefficient theorem gives

Hn(M, k) S Homk (Hn(M, k), k).

Thus Hn(M, k) and Hn(M, k) are paired to k. This induces a cup-product pairing of

spectral sequences as follows :

Ev'q (g) Epq'q' —> £,P + P'.<J + 3'

where

E?-q = E?-q(HN(M, k))

EP-q = E?-q(HN(M, k))

and

EP.a = Ep'q(k).

In particular F>N~//°(0, Homk (HN(M, k), HN(M, k))). This group contains an

element fN, which corresponds to the identity in Homk (HN(M, k), HN(M, k)).

Note also that Ep2-a = Hp(Q>, H°(M, HN(M, k))) is isomorphic to Hp(<&, HN(M, k))

= E£-N. Calling this isomorphism 0, Proposition 2.2 of [3] can be stated as follows.

Proposition 2. Let x e F|,w then

(3) d2(x) = (-l)pe(x)ud2(fN).

We should remark that this is not at all deep; it is confusing due to the super-

abundance of notation. The significance of it is that it "reduces" the computation

of d2 to that of d2(fN) e //2(0, //"^(A/, HN(M, k))). The following proposition

can be interpreted as giving a computational hold on d2(fN).
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Theorem 4. vN(M) = d2(fN).

Proof. The proof of Theorem 6.1 of [3] shows that, using the standard complex

(S*, 3*), d2(fN) is represented by the cocycle

Y\o, t) = A^^-Fr'-F^-' + Fr1 e Horn« (SN^X, HN(M)).

For this complex Uk=0 is permissible. Thus {YN}={uN}.

We remark that our interest in the classes vN stems from this theorem. One

would hope that it would give some information about Hn(G, k) (which it does).

However, the proposition can be turned around to give us information about vN.

The proposition below is such a situation.

Proposition 3. v1(M)=0.

Proof. Since d2: Efr1 -> £|'° is such that v1(M) = d2(f1)v/e see that z>V0 implies

F32-VF22'0. But E2¿\B) = E22-\B)/d2(El-\B)). Also EN2-a(B) = H\%, H°(M,B))

^Hn(<J>, B). Under this identification indeed

En¿°(B) 2 Image (//"(O, B) -^—^ Hn(G, B))

where rr is the canonical projection from G to <& = G/M. Since there is a homo-

morphism P: 3> -> G such that ■np=l<tl, it follows that 7r* is a monomorphism and

hence that En¿°(B) = E2''0(B). Thus we conclude that d2E^(B) -* E%'°(B) is zero.

For appropriate choice of B this gives d2=0.

Part II. The Free Abelian Case

1. We assume throughout Part II that Misa free abelian group. We will special-

ize the preceding by choosing k=Z although that is not strictly necessary for much

of what we do.

Our first task is to describe a particular resolution (/)*, 8%). Let {m¡}iejbe an

indexed free basis for M. Let 7Y=a free (R = Z[M]) module on symbols {X,} iej.

It is well known that there is an acyclic resolution of Z via R-free modules as

follows :

(4a) Dn = ARN, «^0.

(4b) e: DÜ = R-^Z satisfies e(m) =lVmeM.

(4c) 8X : Dx ->■ D0 satisfies 8xxi=mi — l e RVieJ.

(4d) 8m+n(XA Y) = 8nXA Y+(-iyXA8mY for XeDn and Ye Dm.

Clearly 8 <g> id = 0 and so Hn(M, Z)^Dn®RZ^ An(Dx ®R Z)s AnM. The multi-

plication in D* corresponds to Pontrjagin multiplication in H^(M). We  will

exploit this multiplicative structure below.

Theorem 5. 2v2(M)=0 for free abelian groups M.

Proof. Consider feHomR(S2,H2(M)) where /(l, mx, m2) = mx Am2 e A2M

= H2(M). The lemma below shows that/and — 2/2 are cohomologous, i.e., there
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is an h e Homs (Sx, H2) such that/= —2f2 + 8h. According to equation (2), in this

case, v2 is given up to sign by o- Fz— F¡z + Fl where 8F] = o-f2—f2. Since a-f=f

we conclude that 0= —28Fl + 8(ah — h). Thus we may define ga e H(M, H2(M))

by gc = the cohomology class of —2Fl + oh — h. Now it is clear that

(Sg)(<T, T) = O-gT-gOT + gO =   -2{o-Fz1-Fiz+F¡}.

Thus2t;2(M)=0.

Lemma, f represents the class in H2(M, H2(M))~Hom (H2(M), H2(M)) corre-

sponding to twice the identity map.

Proof. We construct part of a chain transformation </>: D*^ S*. Choose

Ml)=W, <Pi(XÙ= HUmdeSu and

<f>2(Xh A Xi2) = +(l, mh, ml2)-(mn, m¡2, mh, mh)

for ix<i2 relative to some ordering of F It is readily verified that B2<p2=cpxd2,

dx</>x = </>0dx, and e<p0 = e. It is also trivial that/is in fact a cocycle. Thus the co-

homology class is determined by f<f>2e : Homs (D2, H2(M)). Now (ff>2)(Xil A Xi2)

= + mh A«í¡2 — (mt~ 1mh) f\mi2= + 2mh An?i2, then +fij>2 represents twice the

identity.

We will see later that this implies 2vn(m) = 0 for all n.

For the moment we record the following trivial facts.

Proposition 3. Let A*, £/* be any ^-system for (O*, d*). Then we may choose

Fa = 0 for all a e I and consequently

<Ap, r) = +{<T*Tj-"l/n_1(T-1, a"1)}

is a representative for vn(M). Since fn: AgDx^-Hn(M) is R-linear and M acts

trivially on Hn(M),fn actually factors through the canonical projection

hnRDx -* AnRDx ®RZ= An(Dx <g)s Z) = A"M = Hn(M).

So does An(o)-fn and in fact they both correspond after the canonical projection to

the identity map. Hence they are equal, and so Fa = 0 is appropriate.

Proposition 4. There is a ^-system {An} for the above complex satisfying

(4e) A0(cr)m = o(m),   m e M<^R = D0 and o el, and

(4f) An+m(o)(Yn A Ym) = An(o)Yn AAm(o)Ymfor Yn e Dn and Ym e Dm.

Proof. Choose A0 as prescribed by (4e). Choose Ax(o) so that A is a-linear and

such that dxAx(o) = A0(o) dx. Then define An(a)(Xx A • • • A Xm) = Ai(o)Xi A • • •

AAi(a)Xm.

Slightly less trivial is the following: Choose an ordering of the index set J.

Proposition. There is a collection of Un(a, t) satisfying

(4g) Uo(a,r) = 0and

(4h)   Un(o, r)(Xh A • • ■ A Xin)=Un.x(o, r)(Xh A • ■ ■ A Xin_J A Ax(o)Ax(r)Xin

+ (-l)"-Mn_1(a, r)(Xh A ■ • ■AXin_1)AUx(o, r)Xinfar ix<i2< ■ ■ ■ <in.
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Proof. Choose U0 as specified and let Ux(a, t) be any ar-linear function satis-

fying 82Ux(o, t) = Ax(c, t)-Ax(c)-Ax(t). Define Un for «S2 by the formula

above. We now inductively verify that 8n+xUn(o, r)+ Un-x(o, t) 8n = An(o, t)

-An(o)An(r).

For convenience we omit most of the complication in the subscripts.

(8n+xUn+Un.x8n)(Xx A---A Xn)

= 8n + i((-ir-M(a, r)(XxA • ■ • A Xn.x)A Ux(Xn)

+ Un.x(Xx A • ■ • A Xn.x)Ax(o)Ax(r)(Xn))

+ Un.x(8n_x(Xx A-   -A A^O^-K-l)"-1^! A---A Xn_x)8xXn)

= ("I)""1 8n+x(A(a, r)(Xx  A ■•• A  Xn.x) A   Ux(Xn))

+ 8nUn.x(Xx  A •■■ A  Xn.x)Ax(c)(Ax(r)Xn)

+ (-iyUn-x(Xx A ■•■ A Xn_x)(AQ(o)A0(T) 8xXn)

+ (-iy-2An.2(cr,r)8n_x(Xx  A-.-A  Xn-X)UxXn

+ [Un-28n_x(Xx A-.-A Xn.t)]

■(Ax(o)(Ax(T)Xn) + (-iy-Wn_x(Xx A---A Xn.x)A0(or)8xXn).

Here we have made use of the fact that the 8n_x(Xx A--- Aln-^AA", is an al-

ternating sum of F-basis elements for which our formula defining Un_x is defined

and of the fact Un.x is wT-linear.

Thus the expression becomes:

(-1)""1 8n_x(A(a, r)(Xx  A-.-A  Xn.x) A   UxXn)

+ (8U+U8)(XX A •■•A Xn.x) A Ax(cr)(Ax(r)Xn)

+ (-iy-2An„2(o, r)(8n_x(Xx  A - - • A  Xn.x))Ux(Xn)

= (-l)-M(a, r)8n.x(Xx  A • • ■ A  jfc-i) A   UxXn + An.x(ar)(Xx  A  Xn_x)

■82UxXn

+ {An-i(c, r)-An.x(a)A^x(r)}(Xx  A •-■ A  Xn_x) A Ax(c)(Ax(r)Xn)

+ (-iy-2An.2(o,r)8n_x(Xx  A-.-A  Xn_x) A   UxXn

= An_x(o, r)(Xx  A • • ■ A  Xn-x)(Ax(o, r)Xn-Ax(a)(Ax(r)Xn))

+ [An-X(a,r)-A^x(a)An.x(r)](Xx  A---A  Xn_x)Ax(a)(Ax(r)Xn)

= An(o, r)(Xx  A - - - A  Xn)-An_x(o)(An_x(r)(Xx  A • • • A Xn.t))

■Ax(a)(Ax(r)Xn)

= An(a, r)(Xx  A-.-A  Xn)-An(a)(An.x(r)(Xx  A • • • A  Xn.x) A Ax(r)Xn)

= {An(o, r)-An(a) o An(r)}(Xx  A ■ ■ ■ A  Xn).

We remark that the above proposition depends crucially on the ordering of the

index set. I.e., the formulae defining Un do not hold for an arbitrary product

Yx A ■ ■ ■ A Yn where Y¡ e Dx.

We use the following algebraic fact.



1969]       CHARACTERISTIC CLASSES FOR MODULES OVER GROUPS. I 543

Proposition 5. There are natural maps

Jn: Horn (AW, A2M) -> Horn (A"-*M, AnM)

satisfying

Jn(P)(xx A--- A Xn_i) = ^¿(-l)i + 1xx A--- A X¡_! A F(Xi) A X,+ 1 A--- A Xn.x.

Proof. It is clear that a similar map

Jn(F): Horn (AW, A2M) -> Horn (®n~1M, AnM)

exists. We need only verify that Jn(F) annihilates elements of the form

X! <g)---(g>xi<g)x(g>x<g)iy1 ®- ■ -®yk

where i+k+2=n— 1.

It is clear since x A x = 0 that all terms except perhaps two are separately zero and

since F(x) e A2M we have x A F(x) = F(x) A x.

Via canonical isomorphisms we may view Jn as a homomorphism of ^-modules

Jn: H\M, H2(M)) -* H*-HM, Hn(M)).

Theorem 6. (Jn+x)*(v2(M)) = vn + 1(M).

Proof. Using the <D-system as above and expanding on — we see that

-U^\o,r)(XH A-AJTJ

= ¿(-iy + 1Jftl A ••• A Xt, A CTt/iia, r)^i/ + 1)A • • • A  Xn.

Untangling the definitions gives the theorem.

We have the remarkable corollaries.

Corollary. v2(M) = 0 iff vn(M) = 0 for all n.

Corollary. 2vn(M) = 0.

Corollary. If<t> is a finite group with an odd number of elements, then vn(M) = 0

for all n.

This last corollary gives a much more satisfactory explanation of the facts

alluded to in [2] concerning the integral representations of Z„.

We remark, lest the reader become too optimistic, that vn(M)=íO in general.

An example is given below.

Together with the results of [3], these corollaries give a fair hold on the 2nd

differential in the Hochschild-Serre spectral sequence for any extension of a free

abelian group.

2. The direct sum theorem. We suppose, in this section, that a u>-module

M = M' ® M". We wish to express v\M) in terms of v'(M') and vn(M"). In view

of Theorem 6 of the preceding section the critical case is v2(M). A general formula

follows from that special case. It turns out to be surprisingly complicated.
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Recalling the canonical isomorphisms

A"(Af ' © M") g   0   A'(M') ® A'(M")
i+j = n

we see that H\M', H2(M'))^Uom (A1M', A2M') is a direct summand of

H1(M, H2(M')), as is H\M, H2(M)). In an obvious sense then we have the

following theorem.

Theorem 7. i>2(AF © M") = t;2(M') + 7;2(M").

Proof. Let R'=Z[M'] and R" = Z[M"]; then R=Z[M]^R" ®ZR". In fact

F* = F'# ® D"%—for we may choose a basis for M' © M" that is the union of a

basis for M' and a basis for M". It follows that we may find A¡(o) and 11,(0, t) for

F* in terms of the corresponding homomorphisms in D'% and D"*. The details

harbor no surprises and lead directly to the formula given.

For the convenience of the reader we formulate precisely the more general

formula. For this purpose we introduce the following notation:

Cf. Horn (AW, Ai +W') -> Horn (Ai+iM, Ai+Í +W)

C',(F)(x ®y) = F(x) ®y   if x e AW and y e MM"

= 0 otherwise.

Of course we are making use of the canonical isomorphisms above.

Similarly we have

C'\ Horn (AW", Ai + W")-^ Horn (Ai + W, Ai + i + 1M)

C"(F)(x ® y) = (- iyx ® F(y)   if x e AW' and y e A'M"

= 0 otherwise.

With this notation then we have the following formula.

Theorem 8. vn + 1(M' © M") = 2i+i=n C'f.(vi + 1(M')) + C^.(vi + 1(M")).

The proof is immediate from Theorem 6 and the previous theorem.

Example 3. Í> = Z2+Z2, M = the group ring of d> modulo its invariant ele-

ments, i.e.

0 —> Z -^ Z [O] -?-> M —> 0

is an exact sequence of O-modules withy'(l) = 2ae<s a.

Let ex and e2 be generators of <!> and define mi = p(ei) i=l, 2 and /n3 = p(E1fi2).

It is easy to see that relative to the basis (mx, m2, m3) £j and e2 induce the trans-

formations described by the matrices

(-1       0       0\ 10    -I       1\

-1       0       1 I    and    |0    -1       0|-

-1       1       0/ \l    -1       0/
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Let tt=mt — 1 e R = Z[M]. It is easy to see that

£i(ti) = -{mx1m31tx+mx1m2im31t2 + m31t3}

£l('2) = '3

£1(^3) = t2

and hence that one may define Ax(ex) by

Ax(ex): Xx^ -{mx1m31Xx + mx1m21m31X2 + m3iX3}

X2 \—> x3

X3 1—> x2

Similarly one can show that the following is a permissible choice for Ax(c2).

Ax(c2): Xx 1—> X3

X2 h-> - {mí 1m2 1m31Xx + m21m3lX2 + m3lX3}

X3 1—> Xi

A direct computation shows that both ^i(«i) ° ^i(ei) and Ax(e2) o Ax(e2) = the

identity map: Dx^- Dx. (Recall that Ax(e¡) is erlinear!)

We may choose Ax(exe2) = Ax(ex) ° Ax(e2) and ^^id) = identity. This completes

the computation of A* in view of Proposition 4. It is now, of course, possible to

compute all of Ufa, t), but not all of them need be computed. Formula (7) gives an

explicit nonhomogeneous two-dimensional O-cocycle with coefficients in

H1(M, H2(M)) which represents v2(M). In view of the special choice of <P it is

possible to describe a two-dimensional cocycle much more efficiently.

Letting Q=Z[<P] we may construct a Q-free acyclic resolution, F* of Zas follows:

83                                             82                              8X                e
■ ■-► &a0 2 © ííai.i © &a2 0->■ ß<*o,i © ß«i,o-► ^"0.0->Z-> 0.

Here a,j is a free generator of Ti+j. The maps in question are

e(«o,o) = F

«0,1 "-»-(«a— l)«o,o»

02: aa,o'-^(£i + l)0!i,o»

*1.1 •"> («I- 1)«0.1 - («2 - 1)<*1,0,

0!0,2|-^-(£2+l)0!0,l.
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A chain map xb* from this resolution to the standard nonhomogeneous resolution

(see [1] for terminology) is given by

•Ao: «0,0 !-> [    Jl

0i : «i,o i-> [«il

«o,i i-> [«2],

</r2:a2,0l-> [«i.eil + H, 1],

«1.11-* [Eli«2]-[e2, «ll.

«0.2 <-> [E2> £2] + [L  li-

lt follows that if h is any nonhomogeneous 2-cocycle with coefficients in the

<I>-module A, then « ° xu2 represents the same cohomology class. Then formula (7)

shows that v2(M) e H2(<S>, H\M, H2(M)) is determined by co2 where

"2 ° </<2(«2,o) = -{«f V Vií/ií«!. «i)+ll -/lükO, 1» 6 Horn (Hi, //2),

ü)2 o 02(ocltl) = -{«r^íya^iíeii «a)-«a x«f Vagi's. £i)l.

and

tu2 o </i2(a0>2) =  -KVyji/^j, e2)+ 1 • 1 -f2Ui(l, 1)}.

In view of the remarks above that Ax(et)2 = id we may choose E/ii«^ *()=0. As

usual we may choose ÍA0, 1)=0. Since /ti(ei£2) = ^i(eiMi(e2) by definition we

may choose Ux(ex, e2) = 0. Thus our cocycle takes the form

«2,01->- 0,

«1.1>-> {«a*1«rl/aí/ií«ai ei)}>

«0,2 >-*■ 0.

We must now calculate Ux(e2, ex). We have

d2Ux(s2, ex) = Ax(e2ex)-Ax(e2) o ^^ej)

= Ax(ex) ° Ax(e2)-Ax(e2) o Ax(ex).

A direct calculation shows that this right-hand side is the homomorphism

Xxr-^(mx1-m{1m31)Xx + (l-m31)X2 + (mx1m31-m2m31)X3,

X2h^(m31-l)Xx + (m21m31-m21)X2 + (mxm31-m21m31)X3,

X3 k> (mx 1m2 ^ 1-mx 1m3 x)Xx + (m2 lm3 1 -mx ^m2 lm¡ y)X2 + 0,

and thus one can choose Ux(e2, ex) to be

Ui(e2, cx): Xx\-+0 -mï^m^Xi A X3 + m31X2 A X3,

X2v-+0 — m31Xi A X3 -m21m31X2 A X3,

X3\-> -mx1m21m31Xx A A^ + O + O.
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Consequently if we identify Ht(M) with A'M

</> = e21ex1f2Ux(e2,ex): mx^-0 +mx A m3 + m2 A m3,

m2h^0 —mx A m3 — m2 A m3,

m3\-> —mx A m3.

Summarizing. v2(M)e H2(í>;Hom(A1M, A2M)) is given by the cocycle

sending a2.0 and a0,2 to zero but sending axx to the homomorphism, <f>, just de-

scribed.

We now contend that v2(M)^0. For suppose g is a 1-cochain whose coboundary

is the above cocycle. Then if

Vo,i = g(a0.i) g Horn (M, A2(M)),   and    y1>0 = g(«li0),

then we would have

(l)0 = (l + £l)v0>1,

(2) <A = (ei-l)Fo,i-(E2-l)Vi,o, and

(3) 0=(l+e2)vli0.

We now make use of the structure of M as a module over the subgroups generated

by e,. Equation (1) implies that v0.i defines an element in H1(Z<21), Horn (M, A2M))

where Z21} = the subgroup of Ct> generated by »x. A similar statement holds for

Vi>0. A lemma proved below shows H1(Z2\ Horn (M, A2M))=0. Thus we conclude

the existence of x0,i and Xi,0 e Horn (M, A2M) such that yi,0 = (ci — l)x1>0 and

Vo,i = (e2- l)x0,i- Thus equation (2) implies the existence of i such that

</> = (ci- l)(e2- IK e Horn (M, A2M).

We now demonstrate that such an equation is impossible. Note that M=A1M

and A2M are paired to A3M which is easily seen to be a trivial <l>-module of rank 1

with mx A m2 A m3 as generator.

Note that

<£(z«2) A m3 — <p(mx) A m2 = ( — mx A m3 — m2 A m3) A m3

— (mx A m3 + m2 A m3) A m2 = 0 + mx A m2 A m3

is a generator. On the other hand

{(ex-l)(e2-l)Ç}(m2) A m3-{(ex-l)(e2-l)£}(mx) A m2

= -2£(mx + m3) A (m2 + m3)

(detail is easy though tedious) which cannot be a generator.

Lemma. H\Z%\ Horn (M, A2M)) = 0.

Proof. As we have already remarked, A3A/~Z is a trivial <D-module and hence

A2M~Homz (M, Z) = M*. We have the exact sequence

(*) 0^Z-^Z[<D]-*M->0.

Thus

(*') 0 *- M* «- Horn (Z[0], M*) <- Horn (M, M*) +- 0.
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According to [I, p. 199], the middle module is Z[<I>]-free and hence

H\Zf, Horn (M, M*))~H'-1(ZÍ\ M*) forj> 1 ; and from

(*") O^M* = Z[(D]*->Z*-^0

we conclude that Hi-1(Z(2i),M*)~Hj~1(Z(2i\Z*) = forj-l>l. But it is well

known that H\Z{£, Z) is zero for odd i and H'(Z2, ) is periodic of order 2. This

completes the proof that v2(M)^0.

The methods of the previous lemma can be used to determine the group in

which v3 lies, i.e. //2(<I>, H'(M, H2(M))). Since (*), (*'), (*") are exact sequences of

O-modules, we get

F2((D, H\M, H2(M))) ~ //2(0>, Horn (M, AW))

~ //2(0, Horn (M, M*)) ~ H\<î>, M*).

But Z[<D]*~Z[<D], so (*") shows that M*~I, the augmentation ideal of Z[<D]. In

any case we have from (*")

-> //°(<D, Z[4>]) ̂U H°((S>, Z)—>H1(<&, M*) —> 0

and //°(<P, Z[<D]) = ideal generated by 2 = 2*=* in Z[0] and //°(0>, Z) = Z, so the

question is, what is «©? But e is just the usual augmentation map, so e(2) = 4 and

Hl(<$>, M*) = Zit so we have proved

Theorem 9. Let ® be Z2 © Z2 & M the quotient of Z[0] by the ideal generated

by 2 = S«« °- Then

//2(0, H\M, H2(M))) = Z4

and v2(M) is the element of order 2 in Z4.

Note that v\M) = 0 for i>2, since v%M) = 0 for />3 since M has rank 3 and r/3

happens to lie in a 0 group, i.e.

//2(0, H2(M, H3(M))) = //2((D, H2(M)) = F2(<D, A2M)

= //2((P, M*) = H1^, Z) = [H°(Z2, Z) ® H\Z2, Z)]

® [H\Z2, Z) ® H°(Z2, Z)\ = 0.

Remark. The above is the only example we know of a nonzero characteristic

class of a Z-free module.

Example 2*. In this example we briefly consider the dual of

M, M* = Horn (M, Z) = I,

the augmentation ideal of Z[i>]. Although M and / are closely related, we prove

Proposition A. F/2(<D, H\I, H2(I))) = Z2 © Z2 © Z2.

Proposition B. v'(I)=0 for all i.

For Proposition A, we merely list the string of isomorphisms:

//2(í>, H\I, H2(I))) = //2(0, Horn (/, A2/)) = //2(<D, Horn (/, M))

= #3(<D, M) = H\<&, Z)= Z2@Z2® Z2.
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For B, we list a <l>-system for the associated Koszul complex which has the prop-

erty that Ax(X)oAx(v) = Ax(v)°Ax(X) and [Ax(o)}2=[Ax(r)]2 = [Ax(or)f = the

identity. Hence we get U=0, so by Theorem 5, (7«h0. Let ix, z2, z3 be the gen-

erators of /, and

CT-z'i = ii1 r-ix = /g/a1

o-i2 = fa/f1 t/2 = z'|

"h = Mr1 r t, = ixi2l

[Ax(a)](Xx) =  -If1*, [Ax(r)](Xx) =  -i3i21X2 + X3

[Afa)](x2) = -i3i;1xx + x3   [ax(t)](x2) = -i21x2

[Ax(o)}(X3) = - i2ix- 1XX + X2      [A(r)](X3) = - ixi2 1 Xa+Xx.

3. Future developments. First, we would like to say that it now seems likely that

the main results of [3] can be reformulated more generally so as to omit all re-

strictions on the final coefficients F and to make more obvious the applications

to other categories, e.g. Lie algebras, associative algebras, etc. If this turns out to be

the case, the general theory of this paper will then apply to this less restrictive

situation.

As for the category of modules over groups, in a later paper we hope to in-

vestigate the case in which the module is finite in a similar manner that the Z-free

case was examined in the second half of this paper. Eventually there should be a

unified treatment which would presumably utilize a complex defined by Täte.

Finally, the theorems of §1 show that v2(M) is really the object of primary con-

cern (at least in the Z-free case). We would like to find classes

vweH'(<t>, Hl~x(M, HIM)))

with v(2) = v2 and with F° determining the differential í/¡ in the spectral sequence

for the split extension 0 ■ M. Note that if one takes final coefficients F = Z3, say, then

we know that d2 = 0, and it is easy to see that d3 on the third row is given by a cup

product with an element

F3) e //3(<P, H\M, H3(M, Z3))).
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