Locally weakly flat spaces
HTML articles powered by AMS MathViewer
- by O. G. Harrold and C. L. Seebeck
- Trans. Amer. Math. Soc. 138 (1969), 407-414
- DOI: https://doi.org/10.1090/S0002-9947-1969-0239597-0
- PDF | Request permission
References
- R. H. Bing, Tame Cantor sets in $E^{3}$, Pacific J. Math. 11 (1961), 435–446. MR 130679, DOI 10.2140/pjm.1961.11.435
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- John L. Bryant, Taming polyhedra in the trivial range, Michigan Math. J. 13 (1966), 377–384. MR 206967
- J. C. Cantrell, Almost locally flat embeddings of $S^{n-1}$ in $S^{n}$, Bull. Amer. Math. Soc. 69 (1963), 716–718. MR 154288, DOI 10.1090/S0002-9904-1963-10998-2
- J. C. Cantrell and C. H. Edwards Jr., Almost locally flat imbeddings of minifolds, Michigan Math. J. 12 (1965), 217–223. MR 177418, DOI 10.1307/mmj/1028999312 J. C. Cantrell and R. C. Lacher, Some conditions for manifolds to be locally flat, (to appear).
- A. V. Černavskiĭ, Isotopies in Euclidean spaces, Uspehi Mat. Nauk 19 (1964), no. 6 (120), 71–73 (Russian). MR 0175101
- L. C. Glaser and T. M. Price, Unknotting locally flat cell pairs, Illinois J. Math. 10 (1966), 425–430. MR 196735, DOI 10.1215/ijm/1256054995
- O. G. Harrold Jr., Locally peripherally unknotted surfaces in $E^{3}$, Ann. of Math. (2) 69 (1959), 276–290. MR 105660, DOI 10.2307/1970182
- O. G. Harrold, A new local property of embeddings, Bull. Amer. Math. Soc. 71 (1965), 882–885. MR 182013, DOI 10.1090/S0002-9904-1965-11426-4
- O. G. Harrold Jr., H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12–34. MR 91457, DOI 10.1090/S0002-9947-1955-0091457-4 T. C. Hutchinson, Two-point spheres are flat, Abstract 644-18, Notices Amer. Math. Soc. 14 (1967), 364.
- Robion C. Kirby, On the set of non-locally flat points of a submanifold of codimension one, Ann. of Math. (2) 88 (1968), 281–290. MR 236900, DOI 10.2307/1970575
- C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299–304. MR 212805, DOI 10.1090/S0002-9939-1967-0212805-1
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159–170. MR 61822, DOI 10.2307/1969837
- R. P. Osborne, Embedding Cantor sets in a manifold. I. Tame Cantor sets in $E^{n}$, Michigan Math. J. 13 (1966), 57–63. MR 187225, DOI 10.1307/mmj/1028999480 J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. (2) 45 (1940), 243-327.
Bibliographic Information
- © Copyright 1969 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 138 (1969), 407-414
- MSC: Primary 55.70; Secondary 57.00
- DOI: https://doi.org/10.1090/S0002-9947-1969-0239597-0
- MathSciNet review: 0239597