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1. Introduction.   We shall consider Volterra integral equations

(1.1) x(t) = x0- f h(t-T)Ax(r) dr

where x0 and x(t) belong to a complex Banach space X, h(t) is a complex-valued

function and A is an operator in X, generally unbounded. We denote by B(X) the

Banach space of bounded linear operators in X, and by /the identity operator in X.

An operator-valued function S(t), which belongs to L\0, b; B(X)) for any b>0, is

called a fundamental solution of (1.1) if

(1.2) 5(0 = I-A   f h(t-r)S(r) dr

for almost all t. In this definition it is assumed, of course, that the integral on the

right-hand side of (1.2) is in the domain of A.

In a recent paper [6], Friedman and Shinbrot have studied the equation (1.1)

even in the more general case where xQ and A depend on / and t, respectively.

They proved theorems of existence, uniqueness, differentiability and asymptotic

behavior of solutions. They also constructed fundamental solutions and derived

asymptotic bounds for them. We recall [6] that if x0 is in the domain of Au, for

some [¿>0, then the solution of (1.1) is given by S(t)x0.

The purpose of the present paper is to derive monotonicity theorems for solutions

of (1.1). We shall generalize some of the monotonicity theorems of Friedman [2]

(see also [4]) from the case X=R1 (R1 the one-dimensional Euclidean space) to the

case where X is any Banach space.

In §2 we give some auxiliary results. These results are concerned with Volterra

equations in one-dimension (i.e., X=R1). In particular, we study the behavior of

the solutions with respect to a certain parameter.

In §3 we give an integral formula for S(t) in case A is a bounded operator. For A

unbounded, we construct a fundamental solution as a limit of fundamental

solutions corresponding to the bounded operators A(I+A/n)~l. We prove that the

fundamental solution coincides with the fundamental solution of [6, Chapter 1]
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or of [6, Chapter 2] provided the assumptions of [6, Chapter 1] or of [6, Chapter 2],

respectively, are satisfied.

In §4 we derive a formula for S(t) in case A is selfadjoint. As a by-product, we

obtain monotonicity theorems for (S(t)x0, x0).

In §5 we drop the assumption that A is selfadjoint. Instead we assume that the

resolvent (M-A)'1 exists for all A except for a sequence {p.k} of poles, and 0</x1

</u2< ■ ■ -, /^/c^°o as &->co. We obtain a formula for the solution T(t)xQ of (1.1)

and then derive monotonicity theorems for/0(r(?)^o); here/0 is a bounded linear

functional in X.

In §6 we give some additional results obtainable with the methods of the previous

sections, and some applications to control theory.

2. Auxiliary lemmas. A real-valued function f(t) is said to be completely

monotonie in an interval [a, b) ufe C°[a, b) and for all n^O,

(-1 )n dnf(t)¡dt " > 0   for all t e [a, b).

Similarly one defines complete monotonicity in intervals (a, b), [a, b]. We recall the

following results (see [9]):

Lemma 2.1. If f(t) is completely monotonie in an interval (a,b) then f(t) is

analytic in (a, b).

Lemma 2.2. A function f(t) is completely monotonie in the interval [0, oo) if and

only if

(2.1) /(*) =  PV"#(A)
Jo

where (f>(X) is a bounded nondecreasing function.

Lemma 2.3. If {fm(t)} is a sequence of completely monotonie functions in (a, b)

and iff(t) is a continuous function in (a, b) such that, for each t e (a, b),fm(t) —>f(t)

as m ->• go, thenf(t) is completely monotonie in (a, b).

Setting Alf(t)=f(t + v)-f(0,

A-+1/(0 = A?(A„/(0),

the assertion of the last lemma is a consequence of the fact (see [9]) that f(t) is

completely monotonie if, for any integer m^ 1 and r;>0,

(-l)mA™/(/) H   fora < t < b-m-n.

In view of Lemma 2.1, if f(t) is a completely monotonie function in (a, b) which

does not vanish identically, then/(/)>0 for all t e (a, b).

We shall need the following result of Miller [8]:

Lemma 2.4. If f(t) is a nonzero completely monotonie function in [0, oo), then

log f(t) is a convex function.
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Proof. We have to show that

g(t)^f(t)f"(t)-(f(t)y^o.
Using (2.1) we find that

g(t)= r r a(a-,*>-<*+<<>< ¿¿(A) #(u).
Jo   Jo

Next,

I"" n X(\-fJ.)e-a+u)tdcf>(X)d<f>(jx) = P fA \(\-ix)e-{K+Md<p(p)d<l>(\)
Jo   J« Jo   Jo

Jo   Jo

Therefore

/•oo      /»# /»OO      /"OO /»OO      l*|í

*(0 = (•)+ (•)= (A-/*)2*"™ ^(A) dfa) ^ 0.
Jo    Jo Jo    J« Jo    Jo

Definitions. A function h(t) which belongs to C(0, oo) and to L\0, 1) is said to

belong to the class Jf, if h(t)^0, /i(/)^0, and h(t) is monotone nonincreasing in

(0, oo). If h e JF and if log h(t) is a convex function in the interval where h(t) > 0,

then we say that h belongs to the class 3#". Finally, we say that h e Jfœ if h(t) is a

nonzero completely monotonie function in (0, oo) and if A eL'(0, 1).

From Lemma 2.4 (applied to h(t + e), for any e > 0) it follows that if h e Jfx then

hejif".

In the following lemma we have collected some results proved in Friedman [2].

Lemma 2.5. Consider the integral equation

(2.2) x(t) = 1- f  h(t-r)x(r) dr (0 < t < oo).

(i) If heathen 0úx(t)ú I.

(ii) If h eJ#", then x(t) is monotone nonincreasing.

(iii) Ifhetfn, then x(t) is in #?*■

From [2, Corollary 4, p. 387] we deduce

Lemma 2.6. Consider the equation

(2.3) X(t) -   Í h(t-o)p(a)do-X f  h(t-r)x(T)dr (0 < t < oo)
Jo Jo

vvAere p(o) is a continuous nonnegative function, and A is a positive constant. If

heJ#" thenx(t)^0.

We shall consider now the equation

(2.4) Sx(t) = 1 - A  f h(t-T)SA(r) dr (0 Í t <oo)
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where A is a complex parameter. By a standard argument one shows that if /?(/) is

in C(0, oo) n Lx(0, 1) then, for each A, there exists a unique solution SA(t) of (2.4).

Furthermore, SA(?) is continuous in (t, A) (t^O, A complex) and analytic in A, for

each i^O. If h e Cn[0, oo) then dnSh(t)¡dtn is continuous in (t, A) (for f^O, A

complex) and analytic in A, for each i^O.

Lemma 2.7. If h eJP then, for n = 0, 1, 2,...,

(2.5) (- l)n(8nSA(t)/8Xn) ̂  0   i/O < A < oo, 0 < t < oo.

Proof. The inequality (2.5) for n = 0 follows from Lemma 2.5(i). We proceed by

induction. We assume that (2.5) holds and prove the same inequality when n is

replaced by n+ 1. Differentiating (2.4) n+1 times with respect to A we get

gn + l n gn ¡-t gn + l

(2.6) ¿^ S,(t) - -(«+ 1) Jo A(i-r) — Sx(t) ¿t - A I A(r- r) ¿tí S,(r) rfr.

It follows that the function x(t) = (-l)n + 1 8n + 1SA(t)lô\n + l satisfies the equation

(2.3) with

p(a) = (n+l)(-iy(d*SK(a)/dn

By the inductive assumption, p(o) ^ 0. Hence we can apply Lemma 2.6 and conclude

that x(i)2:0, i.e., (2.5) holds with n replaced by n+ 1.

Lemma 2.8. If h eJ#" then, for n = 0, 1, 2,..., A>0,

(2.7) (.ir^[m^ift/f.

Proof. We may assume that h e Cx[0, oo). Indeed, otherwise we approximate

h(t) by a sequence of functions {hm(t)} as follows: hm e Jtf", hm(t) -^ h(t) uniformly

on compact subsets of (0, oo) and

r\h(t)-hJt)\dt-+0.

If we know already that the assertion of the lemma holds for the solution SKm(t)

corresponding to hm, then (2.7) is also true since, for any «^0,

^[¥H[f] — *
Assuming h to be in C^O, oo), it follows that dSK(f)\8t exists and satisfies:

(2.8) dJf>  =  -Xh(t)-XJ\t-r)^dr.

The assertion (2.7) is equivalent to the following inequality:

(2.9) (_ir»¿g|W]ia
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For n = 0, this inequality follows from Lemma 2.5(h). We now proceed by induction

on n. To pass from n to n +1, we divide both sides of (2.8) by A and then differ-

entiate both sides n + 1 times with respect to A. We get

8\n

>»+1 n 0sA(/)i f 3" ri s5A(r)i
F^LÄ~erJ = -(«+1)J0A(/- T)d\*[x-dr\dT

We can now apply Lemma 2.6 with

Lemma 2.9. IfheJif^ then, for n = 0, 1,2,..., m=0, 1,2,..., A>0,

(2.10) (- I)»" ¿ [i g 5,(0] ^ 0  for t > 0.

Proof. Suppose first that A(i) is in Cœ[0, oo). Then all the derivatives occurring

in (2.10) exist for t ̂ 0. We shall establish (2.10) by induction on n. For n=0, (2.10)

follows from Lemma 2.7. We now assume that (2.10) holds for all w^0 and 0^n

Sk. We shall prove (2.10) for all m^0 and n = k+1. Differentiating both sides of

(2.4) k+1 times with respect to t, we get

?gm. -«».w«o)-».«-..(„^f2-...-»(o2^i

ÍA       h(t-r)
8k + 1S,{r)

Setting

we get

(2.11)

1     8k + 1
7W) = (-Dfc + 1Ti^T^7ï^(0,

m ~ ¿h ^ A1

We have to prove that, for any m ̂  0,

(2.12) (-ir(ö"TA(i)/3Am)^0.

For m=0 this follows from the definition of T^(t) and Lemma 2.5(iii). We now

proceed by induction on m.

To pass from m to m+l, we differentiate (2.11) m+1 times with respect to A.
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We find

^=.(0-(W+i)J>-,)^
(2.13)

-Aj^-r)-^U,

where

g(o = i g¿t),
i = 0

(2.14) -»-(-^-w^r.+,)£¿>-S^F#£H-
Set

(2.15) ft+1(0 = -(m+1) £ A(i-r) ^£ dr

and denote by xt(t) (O^i^k+l) the solution of the equation

(2.16) xt(t) = (-ir + ̂ (0 - A £ A(/- t)x4(t) dr.

It is clear that

(-■>-*■ ^# = f.«.
Hence, it suffices to show that x¡(r)^0 for 0^i^k+1.

The inequality xfc+1(0^0 follows by applying Lemma 2.6 with

p(o) = (-l)m(m+l) d*U<j)/d\»>;

note that by the inductive assumption, p(o)^0.

From (2.14) and the inductive assumption we easily see that

(- l)m + 1gi(0 = Yi(-\)k~lh{k-n(t)       (0 á / á k)

where y( = yj(A) is nonnegative. From Theorem 1 and its Corollary 3 in [2] we then

have the following: If

(2-17) to - -f=w   (°<a<b<^

then x¡(í) ^0. Thus, it remains to prove (2.17). We assume here that hlk~\b) >0 for

all ¿>>0; if h^-'Xb) = 0 for some b>0 then A(k-»(<) = 0 and x,(0=0.

Since h e Jifm, Lemma 2.4 implies that h'(t)/h(t) / if / / . Hence (2.17) is a con-

sequence of

h'(b)     hik-i+l)(b)

<2-18) m = W)    {0<b< œ)-
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Now, the function (- \yh(i)(t) is completely monotonie. If we apply Lemma 2.4

to this function, we obtain

h'1 + 1\b)/hw(b) ^ ha+2\b)/hii+1\b).

Applying this inequality fory=0, 1,..., k — i— 1, we get (2.18).

We have proved Lemma 2.9 assuming that h(t) is in C°°[0, oo). Consider now the

general case, where we merely assume that h e J^x. Then we can apply the previous

result to the solution SKs(t) of (2.4) with h(t) replaced by h(t + e), oO. Since, for

each t > 0, m ä 0,

dmSKe(0l^m -* 8mS„(t)/dXm,

the assertion of the lemma for Sh(t) follows upon applying Lemma 2.3.

The last lemma of this section is the following :

Lemma 2.10. Let heJf. Then, for n=0, 1, 2,. ..,

(2.19) (- l)n(dnSK(t)ldÁn) ¿ n !/A"       (0 < A < oo, 0 < t < oo).

Proof. From Lemma 2.7 and (2.6) we obtain

f 3n + 1 n+l  Cl dn
(- 1)»+1 Jo h(t-r) ^^ SK(r) dr <L (- 1)« ü±¿ ^ h(t-r) — S,(r) dr.

Applying this relation successively, we find that

(- I)"1 £ h(t-r) ^ SK(r) dri^ (m = 0, 1, 2, . . .).

Hence from (2.6), with n + l =w, we get

am r-t am-l m\

(- \T Wm SK(t) S (- ir"1« Jo h(t~r) ^n S,(r) drï^

for m=l, 2.

3. Integral formula for S(t). Let A' be a Banach space. We denote by o(A) the

spectrum of an operator A.

Theorem 3.1. Let A be a bounded operator and let Y be any continuously differ-

entiable closed Jordan curve containing o(A) in its interior. Let h(t) be any function in

C(0, oo) r\ /^(O, 1). Then the operator-valued function

(3.1) 5(0 = ¿.Jr(A/-^)-15,(0^A

is the unique fundamental solution 0/(1.1).

The orientation of T, in (3.1), is taken counterclockwise.

Proof. The uniqueness of the fundamental solution follows by standard argu-

ments. It remains to verify (1.2). We have
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T= I-A   [  h(t-r)S(r)dr
Jo

= I-f h(t-r) |¿  f  A(XI-A)-lSA(r) dx\ dr.

Changing the order of integration and using (2.4), we get

T=i+eiL[{XI-Ayl-l>\íSÁt)-l]dx

By Cauchy's theorem we easily find that

Also,

1l—¥^dx = 1 {[ h{t~ t)sát) dr)dx

= jtoKt-r)^S,(r)dXJdr = 0.

We obtain that T=S(t). This proves (1.2).

Theorem 3.1 can easily be extended to more general integral equations. For

example, we shall construct a solution of

(3.2) S(t, S) = I- i h(t-r, r)AS(r, s) dr.

Denote by Sk(t, s) the solution of

(3.3) Sx(t, S) - 1 - A £ h(t - r, r)SA(r, S) dr.

Then we have

Theorem 3.1'. Let A, Y be as in Theorem 3.1 and let h(t, r) be a continuous

function for /SO, t^O. Then the unique solution of (3.2) is given by

(3.4) S(t, r) = ¿ Jr (XI- A) - 'S,(t, r) dX.

The proof is similar to the proof of Theorem 3.1.

We next consider the case where A is not necessarily a bounded operator.

Definition. A linear operator A in X is said to belong to the class Si if

(i) A is closed and densely defined ;

(ii) o(A)<={X; |arg A| ¿tt/2 — e, Re Aä A0} for some e>0, A0>0;

(iii) ¡(XI-Ay^íc/lXl if |argA|>7r/2-£.
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Definition. A complex-valued function h(t) is said to belong to the class JT if

(i) A(0)>0;
(ii) h e C*[0, oo) and h(t) is absolutely continuous;

(iii) for any b > 0, h(t) is in L"(0, b) for some p > 1.

In [6, Chapter 1] it was proved that if A e 9Í and he$f, then there exists a

fundamental solution W{t) of (1.1), in a sense different than (1.2). Thus, W(t)

satisfies the equation

(3.5) W(t) = I- f h(t- t)A W(t) dr

in the following sense

(3.6) W(t) = e~tA+ f e-{t-zUF(W; r) dr

where e~tA is the analytic semigroup of — A, and

(3.7) W(t) =W(t) + j]L £ h(t - r) F^r) i/r,

(3.8) F(W; r) = ^ ^(0+T^ £ Ä(i-r)lf(r) dr.

Denoting by D(AU) the domain of A" (see [7] for the definition of A"), we have

the following result : If x0 e D(Ali) for some p. > 0, then W(t)x0 is the unique solution

of (1.1). (The solutions of (1.1) are assumed to be such that ||/1x(t)|| is integrable

in every bounded interval (0, b).)

We introduce the operators

(3.9) An = A(I+A/n)-\

One easily verifies that \\An\\ á Cn and

(3.10) W-AJ-* - -^I+^J^J-a]-1.

Denote by Tn a continuously differentiable closed Jordan curve which contains

o(An), and set

(3.11) S\t) = ¿ j   (XI-An)-'S,(t) dX.

Theorem 3.2. Let h e Jf, A e 31. Then, for any xQ e X,

(3.12) lim Sn(t)x0 = W(t)x0
n-* »

uniformly with respect to t in bounded intervals [0, b).
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Proof. Suppose first that x0 e D(A). Set

Unit) = Sn(t)x0, U(t) =   W(t)x0,

1       f!
«n(0 = "-(O + TJQ)  I   h(t-r)un(r)dr,

1      f1
ù(t) = "(O + ̂ Tp) Jo h(t-r)u(r) dr.

To prove (3.12) it suffices to show that

(3.13) lim un(t) = u(t)
n-* co

uniformly in t in bounded intervals [0, b).

From [6] we have

(3.14) 0(0 = e-M*o + £ e-<(-lM |jj| "M + ¿ £ h(r-s)u(s) ds] dr.

Similarly,

(3.15) un(t) = e-tA»x0 + ^ c-«-'H. [j|] «fcM+Jjgj £ %-*)".W &] *•

From the definition of e~M (see [7]) as an integral of the form

: f «"(AZ-M)"1^
1 Jc

J
27TÍ

and from the relation

(3.16) ¡[^„-^^-^oll^-O   as « -> oo (for any y0 e X)

we find that, for any continuous function v(s),

(3.17) lim Ute-^-e-'-4»]^-1^)! = 0
n-* oo

uniformly with respect to t, s in bounded sets of [0, oo).

Subtracting (3.14) from (3.15) and using (3.17) with v(t) = Ax0 and with v(t)

= Au(t), we get

wm-um è c(t) f iiö(t)-öb(t)|| ^+£n(o
Jo

where C(t) is bounded in bounded intervals [0, b), and sn(t) ->• 0, as n -> oo, uni-

formly in t in bounded intervals [0, b). The last inequality gives (3.13).

Having proved (3.12) for x0 e D(A), we next notice that, in any bounded interval

O^t^b, \\Sn(t)\\SC where C is a constant independent of n, t. In fact, since

(3.6)-(3.8) hold for A — An, W=Sn, the latter bound follows from the estimates

on W obtained in [6, Chapter 1]. It follows that (3.12) holds for all x0 e X, uni-

formly in t in bounded intervals.
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Remark. A result similar to Theorem 3.2 holds also with respect to the more

general integral equation (3.2).

Definition. A complex-valued function h(t) is said to belong to the class Jf' if

(i) n(0)>0 and h(t) is absolutely continuous in [0, oo);

(ii) h(t) e L\0, oo).

If h e jf' then we can introduce the function

(3.18) g(s) = A(0)+/T(j)   for Re s ^ 0,

where ff(s) indicates the Laplace transform off(t). Then g(s)=sh~(s) if Re j>0.

It follows that /T(s) can be defined by continuity for Re s^O, s^O. If g(0)^0, then

we let /T(0) = oo, and introduce the set

(3.19) Äs{-l/ÄA(i);ReieO}.

As proved in [6, Chapter 2], if h e Jif', AeSH, and if

(3.20) g(s) ¥= 0   for all s with Re s à 0,

(3.21) A c p(A),

then there exists a fundamental solution S(t) of (1.1) in the sense defined in §1

(cf. ( 1.2)), and it belongs to L"(0, oo ; B(X)) for any p £2.

Analogously to Theorem 3.2, we have

Theorem 3.3. Let h e Jf', A e 31, and let (3.20), (3.21) hold. Then for any p£2,

and for any x0 e X,

(3.22) lim  f    \\Sn(t)x0-S(t)x0\\i'dt = 0.
n-»oo  Jo

Proof. In [6, Chapter 2] it was proved that

(3.23) 5(0 = ¿ £ (A/-^)-1^) ¿A

for an appropriate curve C lying in the resolvent set p(A) of A, where ,S\(i) is the

inverse Laplace transform of the function

(3.24) \l(s+Xg(s)).

One can easily verify that if SA(t) is the solution of (2.4) then its Laplace transform

coincides with the function (3.24). Hence, by the uniqueness of the inverse Laplace

transform we conclude that the function SK(t) occurring in (3.23) coincides with the

solution of (2.4).

Using the definition of Sn(t) in (3.11) and Cauchy's theorem, we have:

(3.25) S\t) = ¿ £ (XI- An) - ̂ (0 dt.
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Noting that

¡(U-AJ-ixo-ikl-AyiXoW â \\(XI-An)-i\\ \\(An-A)(XI-A)-H0\\ Ú enf\X\

where en -> 0 if n -> oo, we obtain from (3.23), (3.25):

||S»(0*O-S(0*0||   ̂    <*»£    1^(01^-

Since, by [6],

£° \\S»(t)xo-S(t)x0\\'dty' Ú «n£pA_->0

we obtain

as n -> oo. This proves (3.22).

4. Monotonicity for ,4 selfadjoint. Let X be a Hubert space and let A be a self-

adjoint operator in X. We say that ^ is strictly positive if the number

8A = inf ^4}
*#o   (x, x)

is positive. The main result of the present section is the following:

Theorem 4.1. Let X be a Hubert space and let A be a strictly positive selfadjoint

operator, with the spectral decomposition of the identity {EÁ}. If he JF then the

operator S(t) given by

(4.1) S(t)x0 =  ¡X Sß(t) dEux0       (x0eX)
JôA

is a fundamental solution of (I.I).

Note that (4.1) is formally obtained from (3.1) and the formula

JôA A-/*

using the Cauchy formula.

Proof. Since  O^Su(t)úl,  the  integral in  (4.1)  exists  and   ||S(i)*o|| = ||*o||-

S(t)x0 is clearly continuous in t. Next, by Fubini's theorem,

f h(t- r)S(r)x0 dr=   r { f h(t-r)Su(r) dr\ dEuX0.
JO J6A     Uo J

Using (2.4) we find the expression on the right is equal to

T /I_Mil ,/£■*„ = A^Xo-A-^Oxo,
Jôa lu     h- )
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where (4.1) has been used. We have thus proved that

h(t-r)S(r)x0drI¡o
lies in D(A) and that if we apply A to this integral we obtain x0 — S(t)x0. This

completes the proof of (1.2).

From Theorem 4.1 and Lemma 2.5(i), (ii) we obtain

Corollary 1. For any x0 e X,

(4.2) 0 á (S(t)x0,x0) á ||xo||2       (0 < t < oo).

Corollary 2. Ifhe Jtf" then, for any xa e X,

(4.3) (S(t)x0, *o) \ift/       (0 < t < oo).

If S„(i) \ when t / (n>0), then we obtain from (2.4) the bound

s„(r)á [i+/i£aw</t]_1.

We conclude

Corollary 3. If h e 3fé" then, for any x0 e X,

(4.4) (S(t)xo, x0) g J" [l+f* J' h(r) </r]   * d(Eux0, xo).

We next have

Corollary 4. IfheJf«, then, for any x0 e X,

(4.5) (-l)n§-n(S(t)x0,Xo)^0       (11 = 0, 1,2,...;0</<oo).

Proof. By Lemma 2.5(iii), the functions

7U0 = Su(t) d(Eux0, x0)       (m = 1,2,...)
Ja4

are completely monotonie in (0, oo). Since, for each t >0, Tm(i) -> (S(t)x0, x0) as

w -^ oo, the assertion of the corollary follows from Lemma 2.3.

Remark. Theorem 4.1 extends, with the same proof, to the case of the integral

equation (3.2).

5. Monotonicity for general A.

Definition. A closed linear operator A with a dense domain is said to belong to

the class 31' if it satisfies the following properties:

(i) (XI- A) "1 exists for all complex A, except for a sequence {/xfc} (which may be

finite) of positive and increasing numbers with no finite limit.

(ii) At each ¡ik, (XI— A)'1 has a pole, i.e.,

(5.1) (Af-^-i-^çj&Jy+^A)
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where BkJ are bounded operators and Bki0(X) is an analytic function (with values

in B(X)) in a neighborhood of A=^fc.

From (3.1), (5.1) and the residue theorem, we formally obtain the formula

00   m"      1       di_1S  (t)

(5.2) 5(Oxo = 2 g ^ -^ BkJx0.

(We consider here the case where {/¿fc} is an infinite sequence ; the modifications for

the case of a finite sequence are trivial.)

To show that 5(0 is a fundamental solution (under certain assumptions), we

introduce the operators Tp(t) defined by

and set

(5.4) Ap(0 =  - Tp(t) + I-aÇ h(t - r)Tv(r) dr.
Jo

Applying XI—A = (X—¡j.k)I+(pkI-A) to both sides of (5.1), we obtain the

relations :

,, .. ABKmk-[ikBktmk = 0,

ABkii-fj.kBkfi = BkJ+1       (1 S j Ú mk-\).

Using these relations and (2.6), (2.4), we get

Af,, ¿Ç       1      8^SJf)

p  mk     i    ^-^(O

~1 h{t~T) Á Ä CFÏÏ! ~W^~ »*" dr

= l- Î BkA.
k = l

Definition. We denote by XA the set of all elements x0 of X for which

00 mk Il   R V-     II

(5.7) 2 I %# < ».
j>

(5.8) lim   Y Äjc.iXo = *o-

Theorem 5.1. Let heJf, AeW, x0e XA. Then the limit

(5.9) 7X0*0 = lim   Tp(t)x0
p-* 00
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exists uniformly with respect to t,0¿t<ao, and

(5.10) T(t)x0 = x0-A f h(t-r)T(r)x0dr.

Proof. The uniform convergence of the sequence {Tp(t)x0} follows from Lemma

2.10 and the assumption (5.7). From (5.6) we have

(5.11) Tp(t)x0 = X0-A  Í h(t-r)Tp(r)x0dr-Ap(t)x0,
Jo

where
p

Aj,(/)X(J  —  X0~  ¿,    "k.\X0-
k=l

By (5.8), Ap(r)x0 -> 0 as p -> oo. Hence, taking p -> oo in (5.11) and using the as-

sumption that A is a closed operator, we conclude that the integral

f h(t-r)T(r)x0dr

belongs to the domain of A and that (5.10) holds.

Corollary 1. If in addition to the assumptions of Theorem 5.1, we assume that

x0 e D(A) and AxQ e XA, then

(5.12) T(0x0 = x0 - f' h(t - r)AT(r)x0 dr
Jo

and T(t)x0 is continuous for îïïO.

Proof. We have

(5.13) Tp(t)x0 = JCo-f h(t-r)ATp(r)x0dr-Ap(t)x0,

and ATp(r)x0 = Tp(r)(Ax0). Since Ax0 e XA, Tp(r)(Ax0) —> T(r)(Ax0) as p -> oo, uni-

formly with respect to t. It follows that T(r)x0 is in D(A), and AT(r)x0 = T(r)(Ax0).

Now take/)-^oo in (5.13).

Corollary 2. Let h e 2tf n $f, A e 31 n 3Í', x0 e XA, Ax0 e XA. Then

(5.14) T(t)x0 m W(t)x0

where W(t) is the fundamental solution of (I.I) occurring in Theorem 3.2.

Indeed, both sides of (5.14) are solutions of (1.1). By the uniqueness assertion of

[6, Theorem 1], they must coincide.

Corollary 3. Let heJfn Jf', A e 31 n 31', x0 e XA, and assume also that

ih(t) g L\0, oo), and that (3.20), (3.21) hold. Then

(5.15) 7XO*o - S(t)x0

where S(t) is the fundamental solution 0/(1.1) occurring in Theorem 3.3.
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This follows from (5.10) and the uniqueness assertion of [6, Theorem 10].

We recall [6] that if h e ¿? then the condition (3.20) is equivalent to the condition

(5.16) A(oo) > 0.

We shall now study monotonicity of the scalar function /0(r(f )x0), where f0 is

any bounded linear functional in X.

Theorem 5.2. Let he ¿F, A e 31', x0 e XA,f0 e X*. If

(5.17) (-iy-yo(A,;*o) ^0       (lUjúmk,\Úk<có)

then fo(T(t)x0) 10 for all t ä 0.

Proof. From (5.3) and Lemma 2.7 we immediately have that f0(Tp(t)x0) ^ 0.

Now take p -> oo.

Theorem 5.3. Let heM",Ae%', x0eXA, f0eX*.  If (5.17) holds and,  in

addition,

(5.18) (- iy-%(ABkJx0) H       (luja mk, 1 ^ k < oo)

then fo(T(t)x0) \ ift/.

Note that ABkJx0 is well defined for any x0 e X.

Before proving this theorem, we state and prove the following theorem.

Theorem 5.4. Let he^,Ae 31', x0 e XA,f0 e X*. Set

(5.19) %j = (-1)»*-'-1 2 ("W<5fc>mt_,_(.
i=0   \'/

//

(5.20) MBkjXo) £ 0   for 0 £ j ^ mk, 1 á k < oo, 0 S n < oo,

then

(5.21) (-1)" ~f0(T(t)x0) â 0   for 0 g « < oo, 0 < f < oo.

Proof. Let T be a circle about ¡ik such that all the points \i¡ with j^k lie outside

T. By the residue theorem,

(5-22)

Set

I CPU! -^ ^ = ¿ 1 (^)-^(O*

g»(0 = (-l)»A-^^
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and write

i = 0    W

From the residue theorem we then get

- À **■' à w"8" cP^ïïî  ¿y-'-1

= 2 {/i,.mk-5(J)^+/ifc.mt-,+i(i)rf-i+• • • +Bk,mkQ^-«}

(    n»d"J(t) _   1
v    ;   «ftn      277/

where

(mfc-î-l)!     ö/i"*-

(;) = o if/>„.

Thus, by (5.19) the last sum is equal to

"i^:1                        l        8mic-'-1Qi(t) ~
V f_nmic-|i-1_"fc y «n

,é& (w*-í-l)l    V*-8-1      "■"'

Hence, recalling (5.22) and (5.3), we have

rlnT (Ay P  mit-1 1 gm)c ~5_1On (il

[?.&)   (    1) d(n     -¿^¿(-1)" (mk-q-l)\     diS*-*-1     tík-qXo-

Using Lemma 2.9 and the assumption (5.20), we conclude that

(_i)n^/o(r,,(0*o) ^ 0   for« = 0,1,2,...; í > 0.

Since r„(0*o -> T(/)x0 as/? -> oo, the assertion of the theorem follows from Lemma

2.3.

Using the notation A™ (following Lemma 2.3), we can state

Corollary. 7/(5.20) is assumed to hold only for 0^n^no, then

(5.24) (-\y^f0(T(t)x0) ^ 0   forO è n ^ n0,0 <: t < t + r¡ < oo.

Indeed, the proof of Theorem 5.4 shows that (5.24) holds with T(t)x0 replaced by

r„(0x0- Since T„(t)x0 -> T(t)x0 as p -> oo, (5.22) follows.

Remark. Let the assumptions of Corollary 2 to Theorem 5.1 hold and let

h e Cno[0, oo). Then, by [6] and (5.14), T(t)x0 has n0 continuous derivatives in

[0, oo). Hence, (5.24) implies that

(5.25) (-l)"(/37o(7TOxo)/3i't) ̂ 0   for 0 á n <, n0, 0 ¿ t < oo.
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Proof of Theorem 5.3. We shall use the formula

(5.26) rp(0*0= íYí-^-'^ÍS^Í^)!        Sl,Qx0
)C=1 9 = 0 l^H-  * \    P-    I lli=Uk

which one obtains by the same method that was used before to derive (5.23).

Since

Bl.q = (-l)ffl«=-«-1(r*A.«fc-«+JB*,m4-,+i)       O ^ q ^ mk-\),

(5.5) shows that the inequalities (5.18) imply the inequalities (5.20) for n = 1. Hence,

(5.26) gives

fo(TP(t)x0)\ iît/.

Since Tp(t)xQ -*■ T(t)x0 as p -> oo, the proof is complete.

Remark. If X is a finite-dimensional Banach space, then any linear operator A

whose eigenvalues are positive numbers is in 3Í'. Furthermore, the series in (5.2)

now consists of a finite number of terms. Hence (5.7) holds. (5.8) is also valid; in

fact, it easily follows using the residue theorem. Thus XA = X.

6. Additional results. In the previous two sections we have derived theorems

which involved the functions SA(t) (or A>0. A crucial step in the derivation of these

theorems was the behavior of the function 5A(0 for positive values of the parameter

A. Since analogous results on the behavior of SA(t) for A complex are not available

in the literature, we cannot extend, at present, the results of §§4, 5 to operators A

with o(A) which is not contained in the real interval 0< A<oo.

However, for some special functions h(t), the behavior of SA(t), for complex A,

is known with sufficient precision. We give here one example where h(t) = t'a for

some 0<«<1. Then S!,(t) = Ee(-yXt'>) where jS=l-a, y=T(ß) and where Eß(z)

is the Mittag-Leffler function

EÁz) = ! m+T)

From a well-known asymptotic formula for EB(z) (see [1, p. 207]) we find that

1+a
(6.1) w-w 12.2«

if |arg Ar"| < -^— n,

provided |Ai"|^co>0; here y0 = (r(«)r(l-a))-1.

Let us assume that the resolvent set p(A) of A contains the sector |arg A| >

(1+o)7t/2 and that ¡(A/-/!)-1)! ác/(l + |A|) for A in this sector. We define S(t)

by (3.23) and choose C in P(A) such that (6.1) holds for A e C. It follows that S(t)

is a bounded operator for each t > 0. Furthermore, it varies continuously in t. One

can also continue 5(0 analytically into a sector |arg A| < 8 for some S >0.

Since A(0) = co, the results of [6] do not cover the present case of h(t) = t~a.

There arises the question in what sense is 5(0 a fundamental solution.
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So far we have only considered solutions of equations of the form (1.1) where x0

is independent oit. But some of the results extend without difficulty to the equations

(6.2) x(t) = k(t)x0- f  h(t-r)Ax(r)dr,

where k(t) is a scalar function.

The solution is given by (see [6]) :

(6.3) x(t) = £(0)5(0*0+ Í k(r)S(t-r)x0 dr
Jo

where k(r) = dk(r)/dr. Hence, if X is a Hubert space,

(6.4) (x(t), x0) = k(0)(S(t)x0, x0) + f k(r)(S(t - r)x0, x0) dr.

This relation combined with the results of §§4, 5 yields monotonicity properties for

(x(t), x0). For example, if £(0)S0, k(r)^0, then (x(t), x0) = 0.

Applications. If h e 3fx then we have proved several theorems to the effect that

(5(0*o> *o) is completely monotonie in t. Since (5(0)x0, *o) = (x0, x0) =£ 0, we

conclude that (5(0*o> *o) > 0 for all / > 0. In particular, 5(0*o / 0 for all t > 0. Thus

the solutions of (1.1) have the "weak backward uniqueness" property as defined in

[5]. This fact is important in the study of optimal-control for trajectories x(t) given

by

(6.5) X(t) = U(t)+ f  h(t-r)Ax(r)dr
Jo

where u(t) is the control function. It enables us to prove uniqueness of time-

optimal controls (see [3], [5, p. 42]).

If A is selfadjoint and if h e 3tf" and h is strictly decreasing, then we can again

assert that (5(0-*o> *o) > 0 for all x0^0, '>0. Indeed, otherwise we get, from

(4.1), Su(to) = 0 for some /x>0, i0>0. But then, by Lemma 2.5, 5„(/) = 0 if t>t0.

Using (2.4) we then see that Su(t)<Su(t0) if t>t0; a contradiction.

If h 6 ¿C, then we have proved several theorems to the effect that (5(0*o, *o) ^

if t / . This can be used to answer some questions of controllability; for instance,

to show that a point x0 can be "steered," by a suitable control, to any given

neighborhood of 0 (cf. [3]).
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